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Summary

A paradigmatic case of multi-band Mott physics including spin-orbit and Hund’s coupling
is realised in Ca2RuO4. Progress to understand the nature of the Mott insulating phase
of Ca2RuO4 has been impeded by the lack of knowledge about the low-energy electronic
structure. In this thesis, it is demonstrated how the band structure of the paramagnetic
insulating phase can be measured directly by angle resolved photoemission spectroscopy.
The obtained electronic structure features two Mott insulating energy scales. This multi-gap
character is analysed through photoemission matrix element effects, band curvature maps
and first principle band structure calculations. These results provide detailed insights into
the orbital character of the band structure and highlight the multi-band nature of the Mott
transition in Ca2RuO4.

Zusammenfassung

Ca2RuO4 ist ein paradigmatisches Beispiel, in welchem sich Multiband Mott-Physik ein-
schliesslich Spin-Bahn- und Hund’sche-Kopplung manifestiert. Da nur wenig über die
niederenergetische, elekronische Struktur von Ca2RuO4 bekannt ist, wurde Fortschritt dessen
Mott-isolierenden Zustand zu verstehen gebremst. In dieser Abschlussarbeit wird gezeigt,
wie die Bandstruktur in der paramagnetischen, isolierenden Phase mittels winkelaufgelöster
Photoemissionsspektroskopie gemessen wird. Die elektronische Struktur bringt zwei Mott-
isolierende Energieskalen zum Vorschein. Mittels Matrixelementeffekte der Photoemission,
Bandkrümmung und ab initio Bandstruktur-Rechnungen wird diese Ausprägung analysiert.
Die Ergebnisse bieten Einsichten in die orbitalen Charakteren der elektronischen Bänder und
verdeutlicht die Multiband-Natur des Mott-Übergangs in Ca2RuO4.
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Chapter 1

Introduction

Back in caveman-times – the Stone Age – human civilization was characterized by the use of
tools typically made out of stones. This prehistoric time span ended with the advent of metal
working. New materials defined these eras such as in the name giving Bronze Age, the Iron
Age and in later periods with the mass production of steel all up to silicon based technology
in our current society. Major jumps of technological progress originate ultimately from a
better understanding of materials. Nowadays, this field of research is one of the big pillars of
modern physics, the physics of condensed matter.

Strongly correlated systems

A classic, yet contemporary topic in modern condensed matter physics is the electron
correlation problem in transition metal oxides (TMO). This class of materials exhibit rich
phase diagrams and versatile properties in electronic transport and magnetism. In 1986, the
Nobel prize winning discovery of high temperature superconductivity in the cuprates by
Georg Bednorz and Karl Alex Müller [1] ignited a new field of research. Further scientific
progress has been fueled by the discovery of superconductivity in another layered perovskite,
(but copper-free) Sr2RuO4 in 1994 by Yoshiteru Maeno [2]. Other breakthroughs in transition
metal based materials were achieved by the discovery of colossal magnetoresistance in
manganites [3] or the giant thermopower effect in cobaltates [4]. All properties hold great
potential for applications.
d electrons in TMO’s lead to complicated collective behavior due to the duality of their
itinerant and localized nature. Strong correlations are often associated with the proximity to
a Mott-insulating state, where electrons are localized due to a strong Coulomb repulsion U .
In the past decade it became more and more clear that Hund’s coupling J, the intra-atomic
exchange interaction, plays a significant role in TMO’s displaying strong correlation effects
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[5]. A delicate interplay of U and J may lead to complex behavior of orbital and spin degrees
of freedom. An example is the compound series Ca2−xSrxRuO4. For this family, a rich phase
diagram is present [see Fig. 1.1] with unconventional superconductivity1 in Sr2RuO4 on one
side (x = 2) and the antiferromagnetic Mott-insulator Ca2RuO4 on the other (x = 0) [6]. It is
still an open question what exactly conspires the latter to be Mott insulating, thus the ground
state is still controversial. Progress has been held back mainly due to the lack of experimental
knowledge of the electronic band structure. This is the main topic of the present thesis.
It is structured by starting with physical concepts, important for Ca2RuO4. Then the crystal
structure of the compound and possible scenarios for its Mott insulating ground state are
discussed. Next, concepts in angle resolved photoemission spectroscopy are introduced,
followed by the measurement and discussion of the band structure of Ca2RuO4.

Fig. 1.1 Phase diagram of Ca2−xSrxRuO4 [7].

1triplet pairing of Cooper pairs.



Chapter 2

Physics of the ruthenates

2.1 Mott physics

In band theory, which is based on a one-electron picture in the Hartree-Fock approximation,
the distinction between metals and insulators is clear. For insulators the atomic electrons
fill up exactly an integer number of bands while all other bands are empty. Occupied and
unoccupied bands are seperated by an energy gap except in cases like in the semi-metal
Bismuth. Metals exhibit partially filled bands and we can describe low energy excitations as
quasiparticles in Landau’s Fermi liquid theory [8]. Insulators have an even number, while
metals have an odd number of electrons per unit cell. However, some transition metal oxides
like NiO with an odd number of electrons per unit cell are insulating [9]. In a half filled
valence band, each atomic site is singly occupid. Conducting charge would require at least
one electron to hop to a neighboring site, creating an empty orbital and a doubly occupied
one. Coulomb repulsion of two electrons occupying the same site might be so strong, that
such hopping transitions1 are too expensive in terms of energy, resulting in localization of
the electrons. This was pointed out early on by Nevill Mott and Rudolf Peierls [10]. Such a
system becomes a so-called Mott insulator. With shrinking lattice constant a2, orbital overlap
increases and a metallic state emerges. This transformation is known as a Mott-Hubbard-
transition. The most simple model for d-electrons in transition metals and their compounds
is the single-band Hubbard model. The Hamiltonian reads

H = HBand +HCoulomb =−t ∑
i j,σ

ĉ+iσ ĉ−jσ +U ∑
i

n̂i↑n̂i↓ (2.1)

1related to the kinetic energy.
2or increasing orbital radial extensions relative to a.
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describing nearest neighbor hopping only, via matrix element −t, related to the bandwidth
W = 4t [Fig. 2.1]. ĉ±i,σ are real-space field operators on the lattice site i with spin σ , n̂iσ =

ĉ+iσ ĉ−iσ is the density operator and U is the matrix element of the Coulomb potential. We
focus here on one electron per atomic site (half filling). In the metallic band limit U = 0, the
band energy is given by a simple Fourier transform:

HBand = ∑
k

∑
σ

εkĉ+k,σ ĉ−k,σ (2.2)

with the dispersion relation:
εk =−t ∑

a
eik·a, (2.3)

where the sum runs over all lattice vectors a connecting nearest neighbors.

Fig. 2.1 Energy dispersion [eq. (2.3)] of a cubic crystal in one dimension with bandwidth W = 4t.
Red shaded indicates the band filling.

In the atomic limit t = 0 and U > 0, the first excitation state has an empty site and one
doubly occupied one. This state has energy U , thus the system is an insulator. Suppose we
have N +1 electrons where N electrons are localized on their sites. The motion of the extra
electron, freely hopping between sites, can be described via an electronic band of width 2t.
By the same token, a hole for N −1 electrons can move freely with bandwidth 2t. Thus, by
starting from the metallic limit and increasing U up to a critical value Uc, we end up with
two so-called Hubbard sub-bands of width W = 2t, seperated by an energetic Mott-gap ∆.
Both extremal cases are summarized in a schematic density of states (Fig. 2.2).
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Fig. 2.2 Schematic representation of the density of states of the metal-insulator transition in the
Hubbard-model. Starting from metallic half filled band, a strong Coulomb repulsion U splits the band
into two Hubbard sub-bands, seperated by a Mott gap.

Despite its simplicity, the single-band Hubbard model is able to describe a variety of
phenoma such as itinerant ferromagnetism3, metal-insulator transition and important aspects
of high-Tc superconductivity in layered cuprates.
Starting from a Mott-insulator like La2CuO4, superconductivity emerges upon hole or
electron doping [11]. This created much attention towards a more elaborate two-dimensional
Hubbard model and thus filling-controlled Mott metal-insulator transitions have been studied
vividely [12]. An examplified outcome is shown in Fig. 2.3, where the filling is varied by
tuning the chemical potential µ:

Fig. 2.3 Ground state phase diagram in the plane of U and the chemical potential µ , related to the
filling of charge carriers. At µ =−0.5, corresponding to half filling, the Mott insulating phase is most
stable. Taken from Watanabe et al. [13].

3the Stoner criterium can be derived.
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2.2 Hund’s coupling

The Mott phenomenon has been considered as a canonical example of a ground state, driven
by strong electron correlations [12]. In general, strongly correlated electron systems such
as ruthenates, iron pnictides and chalcogenides are multi-band materials showing strong
correlations while not being close to a Mott insulating state. In the past decade, it became
more evident that Hund’s coupling J may play a significant role and that it introduces an
additional channel for electron correlations [5].
Hund’s coupling is traditionally associated to intra-atomic exchange coupling: Provided
orbitally degenerate states exist, placing electrons in different orbitals reduces the cost in
Coulomb energy. Because of the Pauli principle, an antisymmetric orbital wave function
requires a symmetric triplet configuration of the electrons. In other words, Hund’s coupling
aligns the spins of the electronic system. The far reaching consequences of Hund’s rule
J coupling are very rich and complicated in TMO’s, which I would like to illustrate very
briefly. A global picture is produced by de’ Medici et al. [Fig. 2.4] [14]. The basic message
is that the strength of J affects the correlated behavior of the electronic system differently,
depending on the band filling. For an exact half-filled band, an increase of J decreases the
critical Uc for the system to be Mott-insulating dramatically.

Fig. 2.4 False color plot in the plane of interaction strength U/D and band filling n. D is the bandwidth.
The color-code represents the quasiparticle weight Z. J/U is fixed to 0.15. The black bars indicate the
Mott-insulating phases. Materials in the plot are placed according to their experimentally determined
Z [14].

For one electron (one hole) fillings, J has the opposite effect, driving the system away
from the Mott-insulating state. At generic fillings (e.g. n = 2, 4), Uc gets enhanced but
the quasiparticle weight Z = m/m∗ increases with J. The system is further away from a
Mott-insulator while being stronger correlated, in the sense of bad-metal behavior. This
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includes e.g. a poor ability to screen local moments induced by magnetic impurities4 or
electrical resistivity far above the Mott-Ioffe-limit (mean free path of electrons ∼ lattice
constant). For a detailed discussion, see a pedagogical review paper by A. Georges et al. [5].

2.3 Crystal field

Structural distortions of the lattice crystal structure due to crystal field effects lead to lifted
orbital degeneracy and rich physics emerges.
Considering the five d-orbitals in transition-metals with orbital angular momentum quantum
numbers ℓz = {−2, ...,2} one constructs the wave functions dxy,dxz,dyz,dx2−y2,d3z2−r2 as
shown in Fig. 2.5. In perovskite-type TMO’s , these transition-metal atoms are surrounded
by six O−2 ions. The crystal field elevates the energy of the dx2−y2 and d3z2−r2 orbitals,
extending towards the ligand oxygen ions, with respect to the dxy,dxz and dyz orbitals. The
two-fold degenerate subset is called eg and the three-fold degenerate subset is called t2g with
a separation of typical order 1 eV.

Fig. 2.5 Real space representations of the five d-orbitals as equi-amplitude contour plots [15].

4This screening effect is attributed to the Kondo problem. A Kondo-temperature scale is associated to it
which in turn can be related to a temperature scale for Fermi-liquid behavior.
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2.4 Orbital selectivity

Lifting of orbital degeneracy due to the crystal field populates the orbitals differently, leading
to orbital polarization. The role of Hund’s coupling J is to equalize these orbital populations
such that all electrons take advantage of the lowered cost of Coulomb energy. Orbital
fluctuations are suppressed so J acts in some aspects as a band decoupler [16]. In this sense,
J competes with the energy scale of the crystal field. Theoretical studies document that
orbital differentiation may lead to exotic orbital-selective Mott phases (OSMP), where the
orbital manifolds are decoupled and are localized independently. This effects are promoted
by Hund’s coupling as shown in Fig. 2.6 and discussed in Ref. [17]. It has been suggested
that an orbital-selective Mott transition (OSMT) is stabilized in systems where the ratio of
bandwidths differ strongly from one. The narrow bands get localized before the wide bands.
For already small values of J/U , an OSMT can occur for bandwidths of similar magnitude.
However, a OSMP is mainly governed by different individual fillings of the bands. Thus, the
effect of different band fillings and blockage of orbital fluctuations by Hund’s coupling keeps
the Hubbard sub-bands and associated Mott-gaps independent [5],[18].

Fig. 2.6 Phase diagram for a three-band Hubbard model populated by four electrons in the J/U-U/D-
plane with bandwidth D. The inset shows the DOS of an orbital-selective Mott transition, taken from
[18].

The concept of OSMT was initially proposed by V. I. Anisimov et al. in order to explain
properties of Ca2−xSrxRuO4 [6].
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2.5 Ca2−xSrxRuO4 series

The discovery of superconductivity in the layered perovskite Sr2RuO4 1994 by Y. Maeno et al.
[2] with Tc = 0.93 K 5 has triggered a wide scientific interest in the ruthenates. Fermi-sheets
mapped out by de Haas-van Alphen experiments [20] are in very good agreement with Density
functional theory (DFT) calculations in the local density approximation (LDA) [21]. Thus,
Sr2RuO4 is a good metal. Isovalent substitution of Sr by Ca-atoms surprisingly suppresses
metallic behavior and turns the compound into an antiferromagnetic Mott-insulator. This
transition is driven by crystallographic distortions such as Jahn-Teller distortions, rotations
and tilt of the RuO6-octahedra [Fig. 2.7], thus narrowing the Ru-4d bands originating from
electrons populating the t2g-manifold [6]. The Ca2−xSrxRuO4 series has been synthesized
and studied in great detail [22]. The phase diagram is showed in Fig. 1.1. In the following,
I will present a few characteristics of the compound family Ca2−xSrxRuO4 for different
degrees of doping x.

Sr2RuO4 (x = 2) Starting with the end member of the series, the superconductor Sr2RuO4
6

has a tetragonal crystal structure of symmetry group I4/mmm with a = b = 3.8603 Å and
c = 12.729 Å with RuO6-octahedra slightly elongated along the c-axis.

Paramagnetic metal (0.5 < x < 2) The smaller Ca-ion induces rotations of the octahedra,
starting at x = 1.5 which are more pronounced for decreasing x with rotations up to 13◦.

Antiferromagnetic metal (0.2 < x < 0.5) At x = 0.5 rhombohedral distortions set in
and the octahedra start are slightly tilted. In this region metallic transport coexists with
antiferromagnetic correlations. This inspired V. I. Anisimov et al. to propose the orbital-
selective picture of the Mott transition, where the dxz and dyz orbitals are Mott insulating with
antiferromagnetic correlations while the dxy remains metallic [6]. However, this scenario is
still controversial and some experiments are against this picture, e.g. optical conductivity
measurements suggest stronger renormalization effects of dxy quasiparticles leading to
localization [24].

Antiferromagnetic insulator (0 < x < 0.2) Further tilting and compression of the octa-
hedra and thus diminishing bandwidth lead to an insulating ground state. Results from
angle resolved photoemission spectroscopy are controversial. In one study, all Fermi sheets
are observed [25], while in another study the xy-sheet is not seen, as a consequence of the

5Tc = 1.5 K for improved crystal qualities [19] [see Fig. 1.1].
6possible p-wave symmetry of the order parameter [23]
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orbital-selective nature of Ca1.8Sr0.2RuO4, claimed by the authors [26].

Fig. 2.7 Rotational distortion in
Ca2−xSrxRuO4 for different x.

Fig. 2.8 Unit cell of Ca2RuO4 in the compressed
S-Pbca phase. Beige: Ru-atoms, red: O-atoms,
blue: Ca-atoms.

Ca2RuO4 (x = 0) For the other end member of the series, distortions of the crystal lattice
are the strongest in Ca2RuO4, with orthorhombic crystal symmetry group Pbca and lattice
constants a = 5.39 Å, b = 5.59 Å and c = 11.77 Å , below Ts ∼ 356 K, where the RuO6

octahedra are compressed (S-Pbca). Above Ts, the octahedra are elongated [27] (L-Pbca).
Above TAF ∼ 100 K the compound is a paramagnet, below TAF antiferromagnetism sets in.
In the S-Pbca phase (S: short c-axis), the crystal field lowers the energy of the dxy-orbitals. In
the limit of extreme compression and J = 0, the dxy bands are expected to be filled and band
insulating while the dxz- and dyz-orbitals are half-filled. The rotational distortions narrow
down the bandwidths such that the latter two bands get Mott localized [6]. This scenario
stands in contradiction with X-ray absorption measurements, observing band filling ratios
nxy : (nxz +nyz) = 1 : 3 at 300 K and 3

2 : 5
2 at 90 K and discussed as the result of spin-orbit

interaction [28]. Other scenarios have been suggested, see e.g. Ref. [29], [30]. Thus the
ground state of Ca2RuO4 is still controversial.
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Concepts in photoemission experiments

Even ten years before the electron was discovered by Sir Joseph John Thomson in 1897,
Heinrich Hertz observed that an electric spark between two electrodes is more easily created
by illuminating them with ultraviolet light [31]. At the beginning of the next century,
Philipp Lenard carried out more systematic experiments, investigating the rays produced by
irradiating metals. He found that the energy of the rays was independent of the light intensity,
but scaled with its frequency [32]. This intriguing result was explained by Albert Einstein in
his miraculous year 1905 by introducing the light quantum of energy hν[33], yielding the
equation

Emax = hν −Φ (3.1)

where Emax is the kinetic energy of the fastest emitted electrons and Φ is the work
function of the metal surface. This relation has been confirmed 1916 by Robert Millikan,
thus providing direct measurement of Planck’s constant h. With the development of quantum
mechanics and theoretical concepts in atomic and solid state physics, the fundamentals
for photoelectron spectroscopy has been laid out. In the 1950’s Ralph Steinhardt [34] and
Kai Siegbahn [35] developed independently XPS (x-ray photoelectron spectroscopy) for
general chemical analysis. In the following decades powerful probing techniques have been
introduced such as UPS (ultraviolet photoelectron spectroscopy), XPD (x-ray photoelectron
diffraction) and ARPES (angle resolved photoemission spectroscopy). Recent developments
are time resolving pump-probe experiments and spin-resolved ARPES.
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3.1 Photoemission process

After Einstein’s explanation of the photoelectric effect, sophisticated models contributed
to a more profound understanding of the photoemission process. Here I will present the
commonly used three step model, which has proven to be rather successful, despite its purely
phenomenological origin [36] [37] [38].

Step one: Optical excitation of the electron

Time dependent perturbation theory in quantum mechanics predicts electronic transition
probabilities for N-electron systems upon a perturbation or interaction Hamiltonian Hint(t).
In the interaction picture1 of quantum mechanics, it gets clear that transition rates only depend
on Hint(t). Considering a finite light wave perturbing a system of N charged particles, the
Hamiltonian is:

H (t) =
N

∑
k=1

1
2m

(
pk −

e
c

A(xk, t)
)2

+V (x1, ...,xN)≡ H0 +Hint(t) (3.2)

In the Coulomb gauge ∇ ·A(x, t) = 0 =−ih̄∑
3
i=1 ∂iAi = ∑

3
i=1[pi,Ai]:

H0 =
N

∑
k=1

1
2m

p2
k +V (x1, ...,xN) (3.3)

Hint(t) =−
N

∑
k=1

e
mc

A(xk, t) ·pk +
N

∑
k=1

e2

2mc2 A(xk, t)2 (3.4)

For wavelengths much larger than the atomic length scale, A(xk, t) is independent of xk.
This is the dipole approximation.

A(xk, t)ΨN
0 (x1, ...,xN)≈ A(0, t)ΨN

0 (x1, ...,xN) (3.5)

In this fashion, the last part in Hint(t) is a constant and is not relevant. This leads to:

Hint(t) =− e
mc

A(0, t) ·∑
k

pk =−1
c

A(0, t) · i
h̄
[H0,P], P = e

N

∑
k=1

xk (3.6)

with electric dipole operator P, commutation relation i
h̄ [H0,xk] =

pk
m and the matrix

element ⟨ΨN
f |[H0,P|]ΨN

i ⟩= h̄(ωi −ω f )⟨ΨN
f |P|ΨN

i ⟩.

1also known as the Dirac picture.
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The absorption of a photon of energy hν excites an initial state |ΨN
i ⟩ of energy EN

i to
a final state ⟨ΨN

f | of energy EN
f . Assuming a harmonic perturbation the transition rate is

derived, known as Fermi’s golden rule:

Γi→ f =
2π

h̄
|⟨ΨN

f |Hint|ΨN
i ⟩|2δ (EN

f −EN
i −hν) (3.7)

It is convenient to factorize the N-particle state into a single photoelectron state |φ k⟩
and a N −1 particle state |ΨN−1⟩. Since the system will relax after the excitation process
and will screen the photohole, introducing complex behaviour, we make use of the sudden
approximation. As the name suggests, we assume the photoemission process to be sudden
(instantaneous electron removal), with no further interactions between the free photoelectron
and the N − 1 electron system accompanied by a discontinuous change of its effective
potential. To account for proper Fermion-spin-statistics we use the orthogonal projector A to
antisymmetrize the product states:

|ΨN
α⟩= A

(
|φ k

α⟩⊗ |ΨN−1
α ⟩

)
, α = {i, f} (3.8)

This approximation is valid for high kinetic energies of the photoelectrons but has
proven its validity even to some degree for kinetic energies down to 20 eV in cuprate high-
temperature superconductors (HTSC) [39]. For the initial state we use this factorized form by
means of a Slater determinant in the Hartree-Fock formalism. We define the photoelectron
dipole matrix element Mi, f ≡ ⟨φk|Hint|φk⟩ and decompose the N − 1 final state into its
eigenstate components Ψ

N−1
f = ∑m Ψ

N−1
f ,m with the overlap integrals cm,i = ⟨ΨN−1

m |ΨN−1
i ⟩.

The total photoemission intensity I(k,Ekin) ∝ ∑i, f Γi→ f is proportional to:

I(k,Ekin) ∝ ∑
i, f

|Mi, f |2 ∑
m
|cm,i|2δ (Ekin +EN−1

m −EN
i −hν) (3.9)

In solids with strong electronic correlations the removal of the photoelectron results in
a strong change of the effective potential such that Ψ

N−1
i overlaps with many eigenstates

ΨN−1
m . A rigorous determination of the cm,i’s would be complicated and inefficient. In

the framework of many-body perturbation theory a slightly different expression has been
developed to describe quasiparticle excitations near the Fermi level:

I(k,Ekin) ∝ ∑
i, f

|M k
i, f |2 ×A (k,E)× f (T,E) (3.10)
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where A (kf,E) is the so-called one particle spectral function which will be discussed
in the following chapter and f (T,E) = 1

e(E−EF )/kBT+1
is the Fermi-Dirac-function describing

fermionic statistics for state occupation below the Fermi energy EF .

Step two: Propagation of the photoelectrons to the surface

When the optically excited photoelectron travels to the surface, it can suffer various inelastic
scattering events. In general the mechanisms at play during transport is highly complicated
and is object of present research, e.g. here at the University of Zurich in the group of
Prof. Jürg Osterwalder, ultrafast electron dynamics is studied by pump-probe spectroscopy,
resolving processes in the attosecond time scale. Here we shall describe inelastic scattering
interactions in a simplified fashion by the so-called universal curve for the inelastic mean
free path λIMFP, which turns out to be nearly material independent. In the present ARPES
study we use photon energies in the range of hν = 30−120 eV corresponding to an escape
depth of order λIMFP ∼ 5 Å , thus dealing with extreme surface sensitivity.

.

Fig. 3.1 Plot of the universal curve of the inelastic mean free path as a function of kinetic energy.
Figure taken from [40]

The short probe depth is comparable to the layer spacing in TMO’s, solidifying the
validity of the sudden approximation.
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Step three: Transmission of the photoelectrons into vacuum

A fundamental difficulty in ARPES is how the wave vector k at the detector relates to kint of
the photoelectron inside the crystal. This problem arises from the fact that only the kinetic
energy of the electron is measured and not its momentum [41].

The transmission process must obey energy and momentum conservation, dictating for
the kinetic energy of the photoelectrons with binding energy EB:

Ekin = hν −EB −Φ (3.11)

Together with detector angles θ ,ϕ [Fig. 3.2] the wave vector of a free electron in vacuum
can be defined:

k =
1
h̄

√
2mEkin × (sinθ cosϕ,sinθ sinϕ,cosθ) (3.12)

.

Fig. 3.2 Illustration of the setup geometry with the angles as indicted [42]

As the dispersion εkint of the photoelectron inside the solid is in general unknown, deriva-
tion of kint is not possible. In addition, the photoelectron has to overcome the surface barrier
resulting in refraction. In this process, the periodic crystal potential ensures conservation of
the parallel components k|| = kint, ||. Perpendicular to the surface, translation symmetry of
the crystal potential is broken by a potential step −V0 in the solid to 0 in vacuum. V0 arises
as a mean potential, that the photoelectron has to overcome. The complexity of this problem
is reduced in the so-called free electron final state approximation, where the photoelectron is
treated as a single plane wave such that:

kint =
1
h̄

√
2m(Ekin +V0)× (sinθint cosϕ,sinθint sinϕ,cosθint) (3.13)
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where θint is the internal polar angle in the crystal. These relations imply immediately
that for photons with higher energies, we are able to probe higher Brillouin zones (BZ),
thus increasing kint,z when kint,|| is fixed. Furthermore, the conservation of k|| leads to exact
mapping of the energy dispersion of two-dimensional systems like for the Shockley surface
state on a clean Cu(111) surface [43].

3.2 Many-body physics

In order to describe elementary excitations in real solids, many body perturbation theory
has been proven as a useful tool in solid state physics [44]. The main idea is to consider the
response of an electronic system as a whole, upon removal/addition of an electron from/to a
single particle state. The response is given in terms of the complex and energy dependent
self energy Σ(k,E), which describes screening effects and finite lifetime of quasiparticle
excitations τ ∼ h̄

2ImΣ(k,E) . Instead of solving the Kohn-Sham equations in density functional
theory, a more general set of equations have to be solved:

(
− h̄2

2m
∇

2 +V (x)
)

fs(x)+
∫

Σ(x,x′,Es) fs(x′)dx′ = Es fs(x) (3.14)

The exited state with quantum number s, is described by the so-called quasiparticle
amplitude fs(x). A natural way to find practical approximations to the self energy are one-
electron addition (+) and removal (-) Green’s functions for interacting electrons G±(k,E).
They describe the time evolution of an extra added electron / hole due to ionization of the
system.

To briefly introduce the concept of the Green’s function, we start with the time-dependent
Schrödinger equation for a single electron in an external potential V (x, t) and free particle
Hamiltonian H0 =− h̄2

2m∇2:

( h̄
i

∂

∂ t
+H0(x)

)
ψ(x, t) =−V (x, t)ψ(x, t) (3.15)

The Green’s function G0(x,x′, t) satisfies the equation( h̄
i

∂

∂ t
+H0(x)

)
G0(x,x′, t) =−δ (x−x′)δ (t) (3.16)

G0(x,x′, t) is the Fourier transform of G0(x,x′,E):

G0(x,x′, t) =
1

2π h̄

∫ +∞

−∞

G0(x,x′,E)e−iEt/h̄ dE (3.17)
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It can be shown that G0(x,x′,E) is the real space representation of the projection operator
with eigenfunctions {φi(x)} of H0(x) and associated eigenvalues {ε0

i }:

G+
0 (x,x

′,E) = ∑
i

⟨x|φi⟩⟨φi|x′⟩
E − ε0

i + iη
, η > 0 (3.18)

where a positive infinitesimal η is introduced to handle the poles on the real axis. From
eq. (3.18) it is clear that eigenstates of the system corresponds to the poles of the Green’s
function. The Fourier transform [eq. (3.17)] can now be computed as a contour integral in
the lower half complex plane2. Eq. (3.15) can now formally be solved:

ψ(x, t) = φ(x, t)+
∫

G+
0 (x,x

′, t − t ′)V (x′, t ′)ψ(x′, t ′)dx′ dt ′ (3.19)

The concept of Green’s functions can be expanded to systems of interacting electrons.
Similar to eq. (3.18), one finds:

G±(k,E) = ∑
m

|⟨ΨN±1
m |ĉ±k |Ψ

N
i ⟩|2

E ∓ (EN±1
m −EN

i )± iη
(3.20)

But now, the amplitudes are matrix elements of electron creation ĉ+k and annihilation ĉ−k be-
tween many-body states. The one-electron addition and removal spectra A ±(k,E) describe
the single particle excitation spectrum:

A ±(k,E) = ∑
m
|⟨ΨN±1

m |ĉ±k |Ψ
N
i ⟩|2δ (E −EN±1

m +EN
i ) (3.21)

Using the representation of the delta distribution

δ (x− x0) = lim
η→0+

∓1
π

Im
1

x− x0 ± iη
, (3.22)

the one-electron spectral function A (k,E) = A (k,E)++A (k,E)− reads:

A (k,E) =− 1
π
ImG(k,E) (3.23)

with G(k,E) = G+(k,E)+ [G−(k,E)]∗. By virtue of eq. (3.14), the Green’s function
satisfies:

(
− h̄2

2m
∇

2 +V (x)−E
)

G(x,x′,E)+
∫

Σ(x,x′′,E)G(x′′,x′,E)dx′′ =−δ (x−x′) (3.24)

2For negative times, the contour has to be closed in the upper half plane to converge. Since it contains no
poles, the result is G0(x,x′, t) = 0.
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In operator form:

(H0 +V −E)G(E)+Σ(E)G(E) =−1 (3.25)

Taking diagonal matrix elements in the basis of Bloch functions with band index n, wave
vector k and using eq. (3.23) we obtain:

G(k,E) =
1

E − εnk −Σ(k,E)
, (3.26)

A (k,E) =− 1
π

ImΣ(k,E)
[E − εnk −ReΣ(k,E)]2 +[ImΣ(k,E)]2

(3.27)

where εnk is the bare band dispersion, ReΣ(k,E) contains energy renormalization effects
while ImΣ(k,E) accounts for the inverse lifetime of the photohole. When interactions are
absent like in a free electron gas, the spectral function is simply a delta distribution. In
real solids however, the spectral function is broadened and consists of a coherent and an
incoherent part [Fig. 3.3].

Fig. 3.3 Left: False color plot of the spectral function in a toy model with strong correlations. Right:
Energy distribution curve (spectral cut as indicated by the white dashed line) displaying a coherent
quasiparticle peak near the Fermi level EF and an incoherent part towards higher excitation energies.
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Recalling eq. (3.28):

I(k,Ekin) ∝ ∑
i, f

|M k
i, f |2 ×A (k,E)× f (T,E), (3.28)

the spectral function is the meeting point of many-body physics and the ARPES experiment.

3.3 Matrix element effects

Depending on the experimental geometry, light polarization and photon energy, spectra can
reveal asymmetric spectral weight distributions which from experimentalists are often referred
as matrix element effects. I would like to present two approaches to extract information out
of matrix element effects.

A ·p – approach

Fermis Golden rule eq. 3.7 and the representation of the interaction Hamiltonian eq. 3.6 lead
to a transition rate with matrix element:

Mi f ∼ ⟨φ f |A ·p|φi⟩=−ih̄⟨φ f |A ·∇|φi⟩ ∼ ⟨φ f |D ·∇|φi⟩ (3.29)

where the vector potential A is related to the polarization vector D. For a general
experimental configuration, D can be written in Jones notation

D = Deiλ

 cosε

eiδ cosθℓ sinε

eiδ sinθℓ sinε

 (3.30)

where ε is the ratio of the components of D. ε = 0 defines σ - and ε = π/2 defines
π-polarization. δ is a relative phase. δ =±π/2 and ε = π/4 are set for right-handed circular
(+) and left handed (-) circular light polarization. θ is the angle between beam and surface
normal. λ is an overall phase, which is canceled in the modulus squared of the matrix element.

In the following, I outline the main ideas of S. Mosers derivations [45]. Initial states are
approximated as atomic orbitals |φi⟩ ∼ |nlm⟩ and the final state as a plane wave ⟨x|φ f ⟩ ∼
⟨x|k f ⟩= eik f ·x. The first step is to integrate by parts 3:

3vanishing boundary terms due to localized nature of initial states.
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⟨k f |D ·∇|φi⟩=
∫

dxe−ik f ·x D ·∇φnlm(x) = +iD ·k f

∫
dxe−ik f ·xφnlm(x) (3.31)

In this fashion, the matrix element is essentially proportional to the Fourier transform of
the orbitals.

Mi f ∝ D ·k f ⟨k f |nlm⟩ (3.32)

The next level of complexity is a tight binding approach, where the initial state wave
function is a linear combination of atomic orbitals ∼ ∑R j ∑nml c j,nml(k)|R j,nlm⟩ located at
each site R. c j,nlm are tight binding coefficients and |R j,nlm⟩ are atomic wave functions at
coordinates R j within one unit cell. Summing up over all lattice sites, the matrix element is
now proportional to:

Mi f ∝ ∑
R

eik·R
∑
R j

∑
nml

c j,nlm(k)⟨k f |R+R j,nlm⟩

= ∑
R

ei(k−k f )·R ∑
R j

∑
nml

c j,nlm(k)⟨k f |0+R j,nlm⟩

=
N
V

∫
dRei(k−k f )·R︸ ︷︷ ︸

∝δ (k−k f )

∑
R j

∑
nlm

c j,nlm(k)e−ik·R j⟨k f |0,nml⟩

Leading to an expression including a term with the shape of a form factor ∑R j eik f ·R j .
The matrix element is:

Mi f ∝ ∑
R j

∑
nlm

c j,nlm(k f )e−ik f ·R jMnlm(k f ) (3.33)

A ·x – approach

This model has been used to compare the results qualitatively with ARPES spectra of 3d-
orbitals in iron pnictide superconductors [46]. According to eq. 3.6, the matrix element
Mi f ≡ M may also be written as:

M ∝ ⟨φ f |Hint|φi⟩ ∼ ⟨φ f |A ·x|φi⟩ ∼ ⟨φ f |D ·x|φi⟩ (3.34)

Initial states |φi⟩ are atomic orbitals and final states ⟨φ f | are plane waves. In real space
representation, an expansion in partial waves is useful:
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⟨x|φi⟩= ψnℓm(r,θ ,ϕ) = Rnℓ(r)Y m
ℓ (θ ,ϕ) (3.35)

⟨x|φ f ⟩= ⟨x|k f ⟩= eik f ·x = 4π

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

iℓ jℓ(k f r)Y m∗
ℓ (θk,ϕk)Y m

ℓ (θ ,ϕ) (3.36)

where Rnℓ(r) is the radial part of the wavefunction, Y m
ℓ (θ ,ϕ) are spherical harmonics

and jℓ(kr) are spherical Besselfunctions. For a fixed magnetic quantum number m = λ , the
associated matrix element M λ is:

M λ (θk,ϕk) ∝⟨k f |D ·x|φi⟩=
∫
R3

dx⟨k f |D ·x|x⟩⟨x|φi⟩=
∫
R3

dx⟨k f |x⟩D ·x⟨x|φi⟩=

=
∞

∑
ℓ=0

(−i)ℓ4π

∫
∞

0
dr r2Rn′ℓ′(r) jℓ(k f r)(Dxx+Dyy+Dzz)×

×
ℓ

∑
m=−ℓ

Y m
ℓ (θk,ϕk)

∮
S2

dΩY m∗
ℓ (θ ,ϕ)Y λ

ℓ′ (θ ,ϕ)≡

≡ Dxϒ
λ
x (θk,ϕk)+Dyϒ

λ
y (θk,ϕk)+Dzϒ

λ
z (θk,ϕk)

where ϒλ

α={x,y,z}(θk,ϕk) denote the matrix element components associated with the

spherical harmonic Y λ

ℓ′ which is weighted with the polarization of the light Dα at given
emission angles θk,ϕk [Fig. 3.4]. By defining pα = α/r with α = {x,y,z} as spherical
harmonics

px = x/r =

√
1
2

(
Y−1

1 −Y 1
1

)
, py = y/r = i

√
1
2

(
Y−1

1 +Y 1
1

)
, pz = z/r = Y 0

1 , (3.37)

ϒλ
α(θk,ϕk) can be expressed as:

ϒ
λ
α(θk,ϕk) =

∞

∑
ℓ=0

(−i)ℓ

ρℓ(k f r)︷ ︸︸ ︷
4π

∫
∞

0
dr r3Rn′ℓ′(r) jℓ(k f r)× (3.38)

×
ℓ

∑
m=−ℓ

Y m
ℓ (θk,ϕk)

f λ
α (ℓ,m)︷ ︸︸ ︷∮

S2
dΩY m∗

ℓ (θ ,ϕ)pα Y λ

ℓ′ (θ ,ϕ) (3.39)
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where f λ
α (ℓ,m) are standard Gaunt coefficients which have only non-vanishing compo-

nents for ℓ= 1,3. Summarizing:

M λ (θk,ϕk) = ∑
α=x,y,z

M λ
α (θk,ϕk) = ∑

α=x,y,z
Dαϒ

λ
α(θk,ϕk) (3.40)

To obtain real space orbital related matrix elements (for dyz,dxz,dxy) we use the relations:

Mdyz = i

√
1
2
(
M−1 +M 1)

Mdxz =

√
1
2
(
M−1 −M 1)

Mdxy = i

√
1
2
(
M−2 −M 2)

(3.41)

A phenomenological phase eiγ is added to the z-component, which is further discussed in
the appendix. For the orbital δ , we conclude with:

Mδ = Mδ ,x +Mδ ,y +Mδ ,z · eiγ (3.42)

Fig. 3.4 Sketch of the experimental setup. The light polarization vector is expressed by the incident
angles φℓ and θℓ. The angles φk and θk are given by the detector slit geometry. Figure taken from [46].
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3.4 Sample preparation

For the rest of the thesis, I solely focus on the compound Ca2RuO4 (Ca214). High quality
single crystals were grown by R. Fittipaldi and A. Vecchione at Univesità di Salerno in Italy.
The flux-feeding floating-zone technique was used. In this process, polycrystals are melted
locally and subsequently solidified in a single crystalline form. At the same time, impurities
are carried away as the molten zone is moved along the crystal. Synthesis of Ca214 followed
a recipe outlined by S. Nakatsuji and Y. Maeno [47]. Quality in terms of crystallinity at room
temperature was checked by Laue X-ray diffraction.
Prior to our ARPES experiments, the crystals were glued on a phosphor-bronze sample holder
using electrically conducting, two component silver epoxy paste (EPO-TEK E4110). The
silver epoxy cured over night using a heating plate which stabilized a curing temperature of
∼ 75◦C, just below the phase transition temperature Ts. Usage of conducting glue is crucial
to electrically ground the sample. Since in the photoemission process electrons are removed
from the material, an insulating sample is prone to charge up electrostatically. In an ARPES
spectra this induces unwanted shifts of the Fermi level which is typically sensitive to the
incident photon flux. The silver epoxy provides an electronic and mechanical connection of
the sample to an electron reservoir, sample holder. All samples were then aligned by using
a Laue X-ray diffractometer in order to identify crystallographic axes. This process also
allowed a quality check of the sample batch by comparing how clear the diffraction patterns
are. A typical Laue-pattern with the X-ray beam along the crystal c-axis is shown in Fig. 3.5.

Fig. 3.5 a) Laue diffraction pattern of Ca2RuO4 in the a−b-plane with angles α > β as indicated. b)
Typical sample (black) positioned corresponding to the diffraction pattern. Courtesy: Bachelor-thesis,
F. Cossalter.
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By identifying the indicated angles, a distinction of the Ru-O or Ru-Ru bonds is possible.
Hence, the Laue diffractometer allows orientation of the crystals. After orienting the samples,
a cylindrical post (d = 1mm, ℓ= 6mm) is glued on top of each crystal surface. During the
experiment, the sample are in an ultra high vacuum environment with a base pressure of
order 5×10−9 −1×10−10 mbar and cooled down to T = 150 K4. Hitting away the top-post
may cleave the sample. This cleaving process is often used for layered crystal structures,
since it removes the topmost layers and a clean surface is left behind. Typically in one out of
three cleave attempts, the quality of the sample surface is good enough to measure the band
structure with ARPES as presented later on.

3.5 Experimental setup

All ARPES experiments were carried out at external synchrotron facilities. In the following
they are introduced and I show how the detector channels of the energy analyzer are calibrated.

Synchrotron facilities

The most obvious advantage of synchrotron light compared to conventional gas-discharge
lamps like He-lamps or laser sources is the possibility to tune the photon energy over a
wide range at a high intensity and to change polarization of the incident light: parallel to
the plane spanned by the light and surface normal (π), perpendicular to it (σ ) or circular.
Generic synchrotron facilities consist of a large electron storage ring. Radiation is produced
by accelerating electrons in so-called insertion devices or undulators. The desired photon
energy is selected by a grating monochromator. The beam is then focused on the sample.

Fig. 3.6 Typical ARPES beamline at a synchrotron light source [42]. Electrons traversing the undulator,
a periodic magnet structure, undergo oscillations and radiate. The beam gets optimized by optics and
is brought onto the sample. Emitted photoelectrons are then detected by the analyzer.

4paramagnetic insulting S-Pbca phase of Ca2RuO4.
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Experiments were carried out at the Surface and Interface Spectroscopy (SIS) beamline
at the Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI), at the I05 beamline at
Diamond Light Source Ltd. (DLS) near Oxford, UK and at the MAESTRO beamline at the
Advanced Light Source (ALS) in the Berkeley labs, US [Table 3.1].

I05 (DLS) SIS (SLS) MAESTRO (ALS)
Photon spot size < 50×50 µm2 < 50×100 µm2 < 10×10 µm2

Energy resolution (in energy range used) 5−10meV ∼ 10meV ∼ 10meV
Angular resolution ∼ 0.1◦ ∼ 0.15◦ ∼ 0.1◦

Photon energies 18−240eV 10−800eV 20−1000eV
Temperatures 10−300K 10−300K < 12−400 K

Table 3.1 Table summarizing endstation properties of the beam lines used.

Detector calibration

State-of-the-art, commercially available hemispherical energy analyzers (Scienta R4000)
were used in all our experiments. They consist of two metallic hemispheres with a voltage
applied between them. An incoming electron beam is focused by electrostatic lenses and
follows a trajectory according to their kinetic energy. High energetic electrons hit the upper
hemisphere, while the low energetic electrons are captured by the lower one. Tuning the
applied voltage selects the desired kinetic energy with a chosen pass energy. At the other
end of the analyzer, the electrons are typically detected by a CCD chip with several hundred
channels resolving an angular range of ∼−15◦ to 15◦.

Fig. 3.7 Cross-section of a typical hemispherical energy analyzer, taken from [48].
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Before the data analysis can start, one has to take care of a proper normalization of the
measured signal. We performed this reference measurements on polycrystaline copper or on
a gold coated surface. First of all, the efficiency of the detector channels vary strongly and
can depend also on the photon energy. The integrated intensities are a good measure for the
relative detector efficiencies, thus providing the possibility to normalize each channel n:

Inorm.(n,EB) =
Imeas.(n,EB)

∑EB IAu(n,EB)
(3.43)

Fig. 3.8 ARPES measurements taken on polycrys-
talline gold. The axes are the kinetic energy vs.
detector channels. Intensities are indicated by the
colorcode. Left: Raw detector intensities, Right:
Normalized detector intensities.

Fig. 3.9 Top: Fermi tail and fit for a se-
lected channel. Middle: Total efficiency
per channel, normalized representation
with respect to channel 1. Bottom: Fermi
energy for all channels.

To display spectra on a binding energy scale we can fit the end of the spectrum by a Fermi-
Dirac (FD) distribution in the reference measurement and determine the Fermi energy in
each channel. We then define the energy scale:

−EB = Ekin −EF (3.44)

Note that with this procedure, this scale only holds for the sample when it is in ther-
modynamical and electrical equilibrium with the reference material. In an ARPES ex-
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periment, the electrons leave the sample with a kinetic energy hν −EB −Φsample. When
they penetrate the detector material with workfunction Φdet, they gain the energy differ-
ence (assuming Φdet < Φsample). Thus, yielding a sample independent energy scale with
Ekin = hν −EB −Φsample +(Φsample −Φdet) = hν −EB −Φdet. The calibration procedure is
summarized in Fig. 3.9.

Due to the high collimation of the synchrotron light, the momentum resolution is not the
limitation. With a photon energy of hν = 50 eV and an angular resolution of 1.5◦ we resolve
∼1/50 of a BZ. The energy resolution of standard hemispherical analyzers improved over
time down to 5−10meV. The total experimental energy resolution ∆Eexp can be estimated

fitting the Fermi-Dirac distribution and use TFD =
√

T 2
sample +(∆Eexp/4kB)2. This yields a

total energy resolution of ∼ 40meV in our experiments. In Ca214, the insulating energy
scales are larger than the energy resolution. Energy resolution is also not a limiting factor.

3.6 Data analysis

Modern energy analyzers in ARPES experiments collect data simultaneously resolving
energy and momentum. It is convenient however, to analyze the energy distribution maps
(EDM) with cuts through the intensity map.

Fig. 3.10 a) ARPES energy distribution map of the Shockley surface state on a Cu(111) surface. b)
and c) corresponding energy distribution curve and momentum distribution curve along horizontal
and vertical whited dashed lines. Data taken from [43].
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Intensity as a function of momentum at fixed binding energy are called momentum
distribution curves (MDC). Intensity as a function of binding energy at fixed momentum are
called energy distribution curves (EDC) [Fig. 3.10].

MDC

Symmetric lineshapes and the simple background makes an MDC easier to analyze than
an EDC. In the limit of momentum independent self energy, the spectral function takes the
simple form of a Lorentzian [49],

A (ω) =− 1
π

ImΣ(ω)

[h̄ω − εk −ReΣ(ω)]2 +[ImΣ(ω)]2
, (3.45)

centered around εk = h̄ω −ReΣ(ω) and full width at half maximum Γ = 2ImΣ(ω) ∝

τ−1(ω), proportional to the inverse lifetime of the photohole. A relation for the mean free
path λ is obtained with

λ = ∆k−1 =
h̄vk

2ImΣ(ω)
(3.46)

where vk it the bare band velocity. For a fixed energy h̄ω , the intensity in a MDC reads:

IMDC(k) ∝
∆k

[h̄ω − εk −ReΣ(ω)]2 +∆k2 , (3.47)

As a general note, for anisotropic systems with commonly rather complex Fermi sur-
faces, Σ(ω) is not momentum independent. However, the energy dependence should still
dominate over the momentum dependence of e.g. electron-phonon coupling contributions as
demonstrated in the charge density wave system 2H-TaSe2 [50].

EDC

As mentioned, the self energy Σ(ω) typically stronger dependent on energy rather than
momentum. This is reflected in the energy dependent inverse lifetime τ−1(ω), leading to
asymmetric lineshapes. The intensity in an EDC reads:

IEDC(ω) =
ImΣ(ω)

[h̄ω − εk −ReΣ(ω)]2 +[ImΣ(ω)]2
× f (T,ω) (3.48)

Quasiparticle excitations spectra near the Fermi level are influenced by the Fermi-Dirac
distribution f (T,ω).
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Conversion of detector angles into k-space

One has to be clear, that in an ARPES experiment, the data provided by the energy analyzer
is a 3-tensor in case of a constant energy map5 or a matrix in case of 2D-spectra6. In order to
display the intensity maps properly in k-space, the angles have to be transformed in the spirit
of equation (3.12). Besides translation, the used manipulators have three rotational degrees
of freedom. This is illustrated in Fig. 3.11 and demonstrated as follows.

Fig. 3.11 Sketch of the rotational degrees of freedom of a typical ARPES manipulator. Figure taken
from [51].

Let us start with the intrinsic (blue) coordinate system x′,y′,z′ of the manipulator aligned
with the laboratory coordinate system (red) x,y,z. For now, it is assumed that the crystal-
lographic axes a,b,c are congruent with the manipulator axes as well. The analyzer slit
lies in the xz plane with α denoting the detector angle (rotation around y). In this initial
configuration the momentum of the photoelectron is:

k =
1
h̄

√
2mEkin

−sinα

0
cosα

 (3.49)

For an arbitrary angular setting of the manipulator, the rotations are described by Θ

(around y), χ (around x′) and Φ (around z′).

5kinetic energy, detector channel angle, tilt angle and intensity
6kinetic energy, detector channel angle and intensity
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RΘ =

cosΘ 0 −sinΘ

0 1 0
sinΘ 0 cosΘ

 , Rχ =

1 0 0
0 cos χ sin χ

0 −sin χ cos χ

 , RΦ =

cosΦ −sinΦ 0
sinΦ cosΦ 0

0 0 1


To account for the common case, that the crystal c-axis is misaligned with respect to

the manipulator z′-axis, the final adjustment is done with rotations γ (mismatch c-axis and
z′-axis) and β (angle between a-axis and x′-axis).

Rγ =

cosγ 0 −sinγ

0 1 0
sinγ 0 cosγ

 , Rβ =

cosβ −sinβ 0
sinβ cosβ 0

0 0 1


The transformed momentum k′ of the photoelectron is

k′ = Rβ RγR−β RΦRχRΘk (3.50)

In this fashion manipulator angles are translated into momentum space.

Curvature method

In order to enhance dispersive features in 2D intensity maps, usually second derivatives are
applied. However, a big drawback is a resulting shift of the intensity maxima. Zhang et al.
demonstrated a significant improvement of this method in both accuracy and visualization
[52]. Instead of the Laplacian ∇2 f (x,y) = ∂ 2 f

∂x2 +
∂ 2 f
∂y2 of a two dimensional function f (x,y),

the curvature C(x,y) is a measure how strong a function curves:

C(x,y)∼
[1+Cx(

∂ f
∂x )

2]Cy
∂ 2 f
∂y2 −2CxCy

∂ f
∂x

∂ f
∂y

∂ 2 f
∂x∂y +[1+Cy(

∂ f
∂y )

2]Cx
∂ 2 f
∂x2

[1+Cx(
∂ f
∂x )

2 +Cy(
∂ f
∂y )

2]
3
2

(3.51)

where Cx and Cy are arbitrary constants, which tune the contrast in x or y direction. In
Fig. 3.12 the curvature function projects out the maximum very sharp and accurately. Only
distortions can be observed near intersections or near the beginning and the end of spectral
lines like near the Fermi cutoff. Very recent, the curvature method found its application
in several other ARPES studies [53] [54] and will be also used in the presented work.
Preliminary processing starts with noise filtering of the data, because equation (3.51) peaks
at the smallest plateaus of f (x,y). Noise filtering can be done with a Gaussian filter. A
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more sophisticated method is transforming the data into the wavelet domain, then cutting
out high frequency contributions and transforming back the data. Compared to Fourier-
transformations, where the basis are sines and cosines, wavelets have the advantage of being
local. In this fashion, filtering an area of a 2D map does not affect and filter another area.

Fig. 3.12 Left: Toy model of a spectral function times the Fermi-Dirac function. The blue dashed line
marks the true maximum for the EDC, indicated by the white dashed line. Middle: EDC with second
derivative and curvature. Right: 2D curvature map of a).

In an ARPES study by Campuzano et al. [55], Debauchies wavelets have been used for
this purpose. Here I used throughout the Coiflet wavelets, providing a better mean square
error and signal to noise ratio [56]. It is to emphasize that curvature maps cannot replace
ordinary MDC and EDC analysis of ARPES spectra because the rich information stored in the
shape of the data related to intrinsic scattering processes and other fundamental interactions
is completely lost. Hence, this method is meant as a complimentary visualization tool.





Chapter 4

Band structure of Ca2RuO4

Very little is known about the bandstructure of Ca2RuO4 (Ca214). Angle integrated pho-
toemission spectroscopy has revealed the existence of Ru-states with binding energy 1.6 eV
[28]. In a recent resonant inelastic x-ray scattering study of Ca214 in the antiferromagnetic
ground state suggest that spin-orbit interaction plays a significant role in shaping the mag-
netic moments [57]. In the following, I present an ARPES study of the band structure of
Ca214 in the paramagnetic insulating state (T = 150 K). In general, rotational distortions of
TMO-octahedra [see Fig. 4.1] induce Umklapp-potentials which are typically weak. From
this follows that in reciprocal space, signatures of band folding are weak as well. In the
experimental ARPES community, one traditionally discusses high symmetry points of the
Brillouin zone (BZ) in tetragonal notation [26]. Here we actually observe band folding very
clearly and thus introduce orthorhombic notation of the BZ in our results.

Fig. 4.1 Top view of the unit cell of Ca2RuO4. Orthorhombic distortions doubles the unit cell from
tetragonal structure (dashed, green boundary) to the orthorhombic structure (straight, black boundary).
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Experimental data are compared to first-principle DFT+LDA calculations including
spin-orbit interaction and a tunable self-energy Σ(ω) in the Mott insulating regime.

4.1 Oxygen bands

In Fig. 4.2 a typical ARPES spectra along the S−X high symmetry direction is shown.
Two set of bands are observed. Closer to the Fermi-level, the electronic band structure is
dominated by the Ruthenium bands. Below ε ≲ −2.8 eV with ε ≡ E −EF oxygen bands
take over and are observed down to higher energies ε =−7 eV. Along the zone boundary,
band features of high degeneracy are found at the S-points for ε ∼−5.2 eV.

Fig. 4.2 ARPES spectra recorded at a photon energy hν = 65 eV. a) Constant energy map at ε =
−5.2 eV, integrated over 100 meV (π-polarized light). Straight lines point out the true (orthorhombic)
zone boundaries and dashed lines mark the tetragonal BZ. The thick blue line indicates the spectral
cut at which the energy distribution map in b) (circular polarized light) was taken. c) Calculated
spectral function. The dashed line indicates an arbitrary shift with respect to the measurement.

Up to an overall energy shift, excellent agreement is found between DFT calculations
and data of the oxygen bands [Fig. 4.2 b) and c)]. A spectral cut through the bands at these
high degeneracy points reveals a checkerboard-like structure in the constant energy (CE)
map [Fig. 4.2 a)]. The orthorhombic zone centers Γi with i = 1,2,3 are identified.
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Mott gap of Ca2RuO4

An estimate of the minimal insulating Mott gap is best discussed by integrating spectral
weight over the whole projected BZ. As shown in Fig. 4.3 spectral weight is completely
suppressed for ε >−0.2 eV.

Fig. 4.3 a) CE map (ε =−5.2 eV) and area of integration indicated in green and blue. b) Respective
DOS. Complete suppression of spectral weight at approximately ε =−0.2 eV.

This result underlines the Mott-insulating behavior of Ca214. The Mott gap, defining
the energy scale between lower and upper Hubbard bands has previously been associated
with the activation energy of Eactiv. = 0.4 eV1 derived from resistivity measurements [58].
Assuming that the Fermi-level is centered approximately symmetrical between lower and
upper Hubbard bands, the spectroscopic observation of ∆ = Eactiv./2 ≈ 0.2 eV is in good
agreement with the transport experiments [58].

4.2 Ruthenium bands

We now focus on the excitations closer to the Fermi-level. The structure of these bands is
ruthenium-dominated and forms the main topic of the thesis. Fig. 4.4 a) shows an EDM with
a broad and flat band found at ε ∼−1.7 eV. Especially near the zone boundary, additional
structure is observed closer to the Fermi-level at ε ∼ −0.8 eV. These two flat ruthenium
bands (labeled β and α) are revealed as a clear double peak structure in the EDC at the

1Resistivity of activation-type insulating behavior: ρ(T ) ∝ exp(Eactiv./2kBT )
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S-point [Fig. 4.4 c)]. The third structure, labeled γ , is the fast dispersing band at ε ∼−2.2 eV,
indicated in the MDC at εMDC =−2.4 eV in Fig. 4.4 a). Estimated from several MDC’s, the
band velocity yields vγ = 2.6±0.4 eV Å.

Fig. 4.4 Photoemission spectra recorded along the high-symmetry direction Γ1 −S [inset in c)] for
incident photon energies (circular polarized) and spectral cuts as indicated. a) EDM at hν = 63 eV
with an MDC (ε =−2.4 eV) in the inset. b) EDM at hν = 78 eV. c) EDC’s at the S-point, displaying
intensity variations of the α-band.

By changing the photon energy from 63 eV to 78 eV (circular polarized light), the α-
band gets strongly suppressed, while the β - and γ-bands are still clearly visible. So far
no assumptions on the orbital band character have been made. Although details can vary
depending on methodology, band structure calculations of Ca214 commly find a single fast
dispersing branch, centered around Γ [59], [60], [61]. Our DFT calculation [see Fig. 4.11,
will be discussed in greater detail] reveal that the orbital composition of this fast dispersing
band is predominantely of dxy character.
Conclusion: The in-plane dxy-orbitals create the γ-band.

4.3 Matrix element effects

In this part of the discussion, the focus is on the change of spectral weight distribution
depending on light polarization and photon energy. These changes are subject to matrix
element effects. Fig. 4.5 summarizes this behavior.
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Fig. 4.5 Constant energy maps at different energies E −EF as indicated. Maps in the top row cut
through the α-band, in the middle row through the γ-band and in the last row the maps probe oxygen
bands. Columns correspond to different photon energies and light polarization. Zone boundaries are
marked by the straight lines. The dashed zone correspond to the tetragonal symmetry.

It shows CE maps taken at different photon energies and polarization as indicated without
alignment along any high symmetry direction. The CE maps in the first row are taken at
ε = −0.6 eV, cutting through the α-band. In the second row, ε = −2.3 eV, we probe the
γ-band and in the third row at ε = −5.2 eV, we are deep in the oxygen bands where the
spectral weight forms a checker board-like structure. Γ-points can still be identified in the
CE maps of the γ-band but for the α-band, no regularity is observed. Photo emission matrix
elements on the α-band are therefore very complex. In the following analysis, polarization
and photon energy dependence are studied in a more systematic fashion. High symmetry
boundaries of the BZ were well aligned with the direction of the incident light.
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Polarization

The polarization dependence is analyzed for the ruthenium bands along the high-symmetry
cut Γ2 −S, for which this effect is most severe. Fig. 4.6 a) and b) are spectra taken at π− and
σ -polarization, respectively. EDC’s [see Fig. 4.6 c)] reveal that the α-band is affected the
most, relatively to the β -band.

Fig. 4.6 Photoemission spectra recorded along the high-symmetry direction Γ2 −S [inset in c)] for
lights polarizations (hν = 63 eV) and spectral cuts as indicated. a) EDM for p-polarization and in b)
for s-polarization. c) EDC’s as indicated, again displaying intensity variations of the α-band.

In the experiment, the detector slit was perpendicular to the plane, spanned by the incident
light and the sample surface normal. This is the horizontal slit geometry, for which an overall
mirror plane, spanned by the light and the photoelectron cannot be constructed.

Fig. 4.7 Illustration of the symmetries in the photoemission process with a dx2−y2-orbital.
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Hence, a discussion of the polarization dependence by photoemission selection rules in
the spirit of Damascelli et al. [Fig. 4.7] [42] is not possible. An alternative approach to the
polarization dependence is given by the A ·p-approach to the matrix element introduced in
chapter 3.3. Fig. 4.8 summarizes the outcome.

Fig. 4.8 Angular distribution of |M (θk,ϕk)|. Column one: atomic orbitals. Column two and three:
Light source from bottom towards the center with incidence angle α = 45◦. Column four and five:
Form factor of the unit cell is included with detector slit as indicated.

First column shows the angular distribution of d-orbitals, indicated to the left. Second
and third columns are angular distributions |M (θk,ϕk)| of photoelectrons with a light source
directed from bottom to the center at incidence angle α = 45◦. Light polarization is given
in the top row. In the last two rows, the form factor of the unit cell is taken into account.
The spectral cut shown in the inset of Fig. 4.6 c) corresponds to the green curve in Fig. 4.8.
This simple model suggests almost no intensity for dxy for both polarization configurations.
For the out-of-plane dxz, dyz orbitals, it can be inferred that their spectral weight distribution
generally weakens when changing from π- to σ -polarization. This behavior is captured in
Fig. 4.5. However, Bradshaw and Woodruff [62] recently pointed out that it is not proven
that the plane wave final state approximation (as used in this model) is nearly equivalent to
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the more correct spherical wave approximation in photoemission experiments. Thus, taking
spherical waves as final states would be a natural improvement of the model.

Photon energy dependence

The photon energy dependence is studied along the Γ1 − S direction by using the A · x-
approach from chapter 3.3 to analyze the data. In the calculations a phase has been introduced
which is discussed in greater detail in the appendix. Figure 4.9 shows a compilation of ARPES
spectra along the high-symmetry cut Γ1 −S. Intensity of the γ-band has been integrated for
all spectra, from which we expect dxy-behavior [see green boxes in Fig. 4.9]. This has been
also done for the α-band [blue boxes], expecting a different behavior due to the polarization
comparisons [Fig. 4.6].

Fig. 4.9 Compilation of spectra along Γ1−S, recorded at different photon energies as indicated. Boxes
in blue and green are boundaries within intensity is integrated.

Results are plotted in Fig. 4.10 a) and b), for which the colors green and blue correspond
to those of Fig. 4.9. On the one hand, data points in a) display weak oscillations with a
monotonic downward-trend for higher photon energies, indicated by the straight line. On
the other hand, the plot in b) reveals strong oscillations with maxima at approximately
hν = 33 eV and hν = 60 eV. Qualitatively, a good agreement of model and measurement is
found [Fig. 4.10].
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Fig. 4.10 a) & b): Result of the integration process, showed in Fig. 4.9. Rings are data points. A line
to guide the eye is added. Colors green and blue correspond to the boxes in Fig. 4.9. c) Calculated
matrix element for dxy-orbitals. d) Calculation for dxz, dyz-orbitals.

Increasing the photon energy, implies that we are probing higher BZ’s, stacked along kz.
Following references [59], [60], [61], spectral function effects are not expected and therefore
no variations along kz, originating from band dispersion. A weak out-of-plane dispersion can
be intuitively understood by recalling that Ca214 has a layered crystal structure with a long
c-axis and thus little overlap of the out-of-plane orbitals. Also the calibration curve of the
photo diode used in experiment has a slightly upward, monotonic behavior for this photon
energy range and thus cannot be attributed to the decreasing trend of the blue data.
Photon energy dependence of the bands reveal distinct behavior which can be compared to
the results of the model.
Conclusion: The α-band has dxz, dyz character and the γ-band has dxy character.
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4.4 Multi-gap scenario

In this final part, the first-principle band structure calculations will be compared to larger data
set of the ruthenium bands. Fig. 4.11 a) presents a compilation of ARPES spectra, recorded
along high-symmetry directions as indicated in the CE-map in b). Light is circular polarized
with a photon energy of 65 eV, close to the maximum in Fig. 4.10 b).

Fig. 4.11 a) Compilation of ARPES spectra along high-symmetry directions, denoted at the bottom
of the figure. b) CE-map and path of the spectral cuts (straight line: orthorhombic zone, dashed
line: tetragonal zone). c) Curvature map of two spectra. d) Band structure calculations of the orbital
characters. e) Calculated spectral function including orbital dependent Mott gaps.
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The flat β -band extends over the whole BZ. Closer to the Fermi-level, the α-band reveals
its structure. As expected, the γ-band evolves around Γ1. The orthorhombic crystal structure
imposes a band folding, seen as γ-band replica around Γ2 in the next orthorhombic zone
[Fig. 4.11 a & b)]. Representative curvature maps along Γ1 −S−X [Fig. 4.11 c)] reveal no
clear evidence, that the γ-band is found in between the α and β bands. Also demonstrated in
Fig. 4.6, it is absent for hν = 78 eV.
Having explored the orbital character of the bands, the band structure is discussed in a
more general context. Fig. 4.11 d) displays DFT+LDA calculations including spin-orbit
coupling but without Coulomb interaction. The structure of quasiparticle band dispersions
are reproduced but lie on energy scales at the Fermi-level indicating absence of Mott physics.
Introducing a uniform U , acting equally on all orbitals, results in a single spectral Mott
gap which cannot explain the two different energy scales associated to the α- and β -bands.
Thus, the observed band structure suggests that at least two energy scales are involved in the
Mott insulating phase. To mimic this effect on a phenomenological level, orbital selective
Mott gaps are included in the first principle calculations [detail in the appendix]. It is not
obvious whether Mott physics would acts strongest on the dxy or on the dxz, dyz orbitals. The
data analysis presented so far, suggests how a disentanglement of the orbital characters may
be realized. Furthermore, quantum oscillation experiments on Sr2RuO4 suggest that the
γ-band with dxy orbital character is more strongly dressed [19], [63]. For these reasons, a
stronger Mott gap acting on dxy-orbitals (∆xy = 2.15 eV) is included than on the the dxz, dyz

orbitals (∆xz/yz = 0.50 eV) as shown in Fig. 4.11 e). This minimalistic approach reproduces
qualitatively the observed band structure.

4.5 Conclusions & Outlook

In conclusion, I have shown how orbital characters may be associated to the bands observed
with angle resolved photoemission spectroscopy. The fast dispersing γ-band has predom-
inantely dxy while the α-band has more dxz,yz-character. Spectral weight separation of the
α and β bands suggest a scenario where two Mott gaps are included in the first principle
calculations presented.
Conclusion: The paramagnetic Mott insulating state of Ca2RuO4 concludes the in-
volvement of two insulating energy scales.
On a theoretical level, this can be realized in different scenarios, that typically involve orbital
separation. It has, for example, been suggested that the particular crystal field environment of
Ca214 favors a fully filled dxy-band and half filled dxz, dyz-band [64]. The narrow half-filled
bands get localized. As a result, the system will be a combined band and Mott insulator. This
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scenario would naturally produce orbital dependent insulating scales. The orbital selective
Mott scenario also results in two insulating energy scales. Here, a sufficiently strong Hund’s
coupling triggers orbital specific transitions on the different orbitals [see chapter 2.4]. J
equalizes orbital occupation and induces Mott physics depending on their band-fillings. How-
ever, orbital depolarization can also be supported by spin-orbit coupling (∆s.o. ∼ 200 meV
[57]), mixing different orbitals. An indirect way to determine a distinction of these two
scenarios, orbital selective Mott physics or mixed band and Mott insulator, is spin resolved
ARPES2. When band occupation is saturated, the Pauli exclusion principle implies vanishing
spin degrees of freedom. This should be captured in the spin polarization of the electronic
bands, reflecting their filling number.

dxz, dyz

dxy

Orbital selective
Mott insulator

ΔxyΔxz,yz

Hund’s
Coupling

J

Coulomb
Interaction

U

Fig. 4.12 Schematic DOS of an orbital selective Mott insulator transition. A delicate interplay of U
and J might induce orbital dependent Mott physics.

It is to emphasize that the used DFT model is a minimalistic way to reproduce the ob-
served band structure. For future theoretical analysis, more sophisticated models should be
applied.
An orbital selective Mott phase suggests also the metal-insulator transition to be orbital de-
pendent. ARPES experiments for different off-stoichiometric compositions of Ca2−xSrxRuO4

(x = 0.1,0.2,0.3) are important to shed light on this problem3.

2Proposal accepted for beam time (September 2016) at the SIS beam line at SLS, PSI in Villigen, CH
3Proposal accepted for beam time (February 2017) at the I05 beam line at DLS in Oxford, UK



Appendix A

Modeling details

Photon energy dependence

For a given incident photon energy, the ARPES experiment probes a projected part of the
BZ of the given sample. Tuning the photon energy in ARPES translates into a variation of
kz [Fig. A.1]. This influences the electron final state and therefore matrix element effects.
Fig. A.2 represents calculations following the A ·p-approach [chapter 3.3]. Two maxima can
be inferred for the dxz, dyz orbitals which approximately match the periodicity observed for
the α-band. The form factor allows the interpretation of the oscillations as an interference
effect but the calculation does not reproduce the data.

Fig. A.1 Schematic representation
of higher BZ’s with projections for
a given photon energy as indicated.
hνblue < hνred.

Fig. A.2 Schematic representation of higher BZ’s with projec-
tions for a given photon energy as indicated. hνblue < hνred.
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Starting from the A·x-approach, a phenomenological phase ei(kzc/2+φ0) to the z-component
Mz is added according to Ref. [46]. Although the interpretation of the phase is not entirely
clear, this approach has been successful to match ARPES data of Fe-based superconductors.
The full matrix element is:

M δ = M δ
x +M δ

y +M δ
z · ei(kzc/2+φ0) (A.1)

As outlined in the thesis, a good agreement of the data and simulation is found.

The oscillatory behavior can be also understood qualitatively. The radial part of the matrix
element ρℓ(k f r) in equation (4.30) is the determined by the overlap of the atomic radial wave-
function (effective atomic number Zeff = 20 was chosen) and the spherical besselfunction,
coming from the partial wave expansion of the approximated plane wave final state. In a
wide photon energy range, we may neglect higher orders of ℓ > 1 (ρ1(k f r)≫ ρ3(k f r)). For
a fixed magnetic quantum number m = λ the matrix element M associated to λ reads:

M λ (θk,ϕk) = ∑
α=x,y,z

M λ
α (θk,ϕk) = ∑

α=x,y,z
Dαϒ

λ
α(θk,ϕk)

ϒ
λ
α(θk,ϕk)≃ ρ1(k f r)

1

∑
m=−1

Y m
1 (θk,ϕk) f λ

α (1,m).

(A.2)

The phase in the total matrix element results in an oscillatory behavior for non-vanishing
z-component M λ

z . It is enough to consider for what λ the sum of Gaunt coefficients

∑
1
m=−1 f λ

α (1,m) in equation A.2 vanishes. Dropping all angular dependencies (θ ,ϕ) in the
notation with α = {x,y,z}:

f λ
α (1,m) =

∮
S2

dΩY m∗
ℓ=1 pαY λ

ℓ′=2,

px = x/r =

√
1
2
(Y−1

1 −Y 1
1 )

py = y/r = i

√
1
2
(Y−1

1 +Y 1
1 )

pz = z/r = Y 1
0

(A.3)

For M dxy = i
√

1
2

(
M−2 −M 2) the z-Gaunt coefficients are:
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f±2
z (1,−1) =

∮
S2

dθ dϕ sinθ Y−1∗
1 Y 0

1 Y±2
2 ∼

∮
S2

dθ dϕ sin4
θ cosθ

∮
dϕ=0︷ ︸︸ ︷

eiϕ(1±2) = 0

f±2
z (1,0) =

∮
S2

dθ dϕ sinθ Y 0∗
1 Y 0

1 Y±2
2 ∼

∮
S2

dθ dϕ sin3
θ cos2

θ

∮
dϕ=0︷ ︸︸ ︷

e±2iϕ = 0

f±2
z (1,+1) =

∮
S2

dθ dϕ sinθ Y 1∗
1 Y 0

1 Y±2
2 ∼

∮
S2

dθ dϕ sin4
θ cosθ

∮
dϕ=0︷ ︸︸ ︷

eiϕ(1∓2) = 0

Thus to first order, M
dxy
z = 0 and therefore no oscillatory character is assigned to

dxy-orbitals. Analogue for the other orbitals, M dyz = i
√

1
2

(
M−1 +M 1) and M dxz =√

1
2

(
M−1 −M 1) the z-Gaunt coefficients are:

f±1
z (1,−1) =

∮
S2

dθ dϕ sinθ Y−1∗
1 Y 0

1 Y±1
2 ∼

∮
S2

dθ dϕ

even︷ ︸︸ ︷
sin3

θ cos2
θ

+:
∮

dϕ=0︷ ︸︸ ︷
eiϕ(1±1) = f−1

z (1,−1)

f±1
z (1,0) =

∮
S2

dθ dϕ sinθ Y 0∗
1 Y 0

1 Y±1
2 ∼

∮
S2

dθ dϕ sin2
θ cos2

θ

∮
dϕ=0︷︸︸︷
e±iϕ = 0

f±1
z (1,+1) =

∮
S2

dθ dϕ sinθ Y 1∗
1 Y 0

1 Y±1
2 ∼

∮
S2

dθ dϕ

even︷ ︸︸ ︷
sin3

θ cos2
θ

+:
∮

dϕ=0︷ ︸︸ ︷
eiϕ(1∓1) = f+1

z (1,+1)

Concluding finite Mz for dxz and dyz orbitals and therefore oscillatory behavior to first
order. To summarize this result:

⟨k f |D ·x|dxy⟩hν ≈ const.

⟨k f |D ·x|dyz⟩hν ̸= const.

⟨k f |D ·x|dxz⟩hν ̸= const.

(A.4)
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First principle calculations

All DFT calculations were performed by Prof. Titus Neupert1, Dr. Tay-Rong Chang2 and
Prof. H.-T. Jeng3.

We computed electronic structures using the projector augmented wave method [65], [66] as
implemented in the VASP [67], [68], [69] package within the generalized gradient approxima-
tion (GGA) [70] schemes. Experimental lattice constants were used (a = 5.39, b = 5.59 and c
= 11.77 Å). A 12×10×4 Monkhorst-Pack k-point mesh was used in the computations with a
cutoff energy of 400 eV. The spin-orbit coupling (SOC) effects are included self-consistently.
In order to model Mott physics, we constructed first-principles tight-binding model Hamilton,
where the tight-binding model matrix elements were calculated by projecting onto the Wan-
nier orbitals [71], [72], [73] which used the VASP2WANNIER90 interface [74]. We used
Ru t2g orbitals to construct Wannier functions without using the maximizing localization
procedure.
The resulting 24-band spin-orbit coupled model with Bloch Hamiltionian matrix Ĥk re-
produces well the first principle electronic structure near the Fermi energy. To the Green’s
function of this thight-binding model we added the leading divergent 1/ω term of the self-
energy Σ̂(ω) = (P̂xy∆xy + P̂xz,yz∆xz,yz)/ω +O(ω0) in the Mott insulating regime, where P̂xy

and P̂xz,yz are projectors on the dxy and dxz,yz orbitals, respectively, while ∆xy and ∆xz,yz are the
corresponding weights of the poles. From the Green’s function Ĝ(k,ω)= [ω−Ĥ − Σ̂(ω)]−1

with the two adjustable parameters ∆xy and ∆xz,yz we obtained the spectral function A (k,ω)

by taking the trace over all orbital and spin degrees of freedom.

1Department of Physics, University of Zurich, Switzerland
2Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
3Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
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