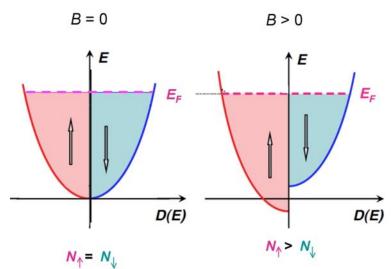


$$\vec{B} = \mu_0(\vec{M} + \vec{H}) \qquad \vec{B} \approx \mu_0 \vec{H}$$

$$\chi = \frac{M}{H} \qquad \chi \approx \frac{\mu_0 M}{B}$$

$$\vec{B} \approx \mu_0 \vec{H}$$

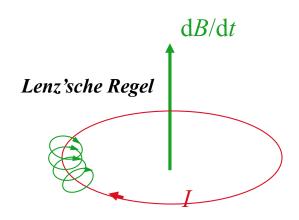
$$\chi \approx \frac{\mu_0 M}{B}$$


M << H Temperaturunabhängige Beiträge:

Pauli-Paramagnetismus

Larmor-Diamagnetismus

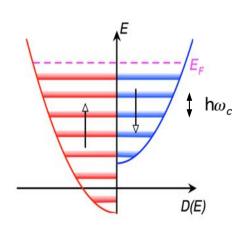
Landau-Diamagnetismus


Metalle

$$\chi_{Pauli} = \frac{\mu_0 \mu_B^2 D(E_F)}{V}$$

$$\approx \frac{3\mu_0 \mu_B^2}{2E_F} \frac{N}{V} \approx 10^{-5} > 0$$

alle Atome mit gefüllten Elektronenschalen



≈ atomare Abschirmströme

$$\chi_{Larmor} = -\frac{\mu_0 e^2 Z_a r_a^2}{m_e} \frac{N}{V} \approx -10^{-6} < 0$$

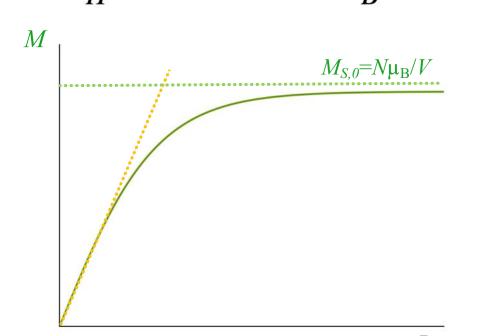
 Z_a : Anzahl Elektronen in äusserster Schale r_a : Atomradius

Metalle

≈ Korrektur auf Grund der Landau-Quantisierung

$$\chi_{Landau} = -1/3\chi_{Pauli}$$

$$\vec{B} = \mu_0(\vec{M} + \vec{H}) \qquad \vec{B} \approx \mu_0 \vec{H}$$


$$\chi = \frac{M}{H} \qquad \chi \approx \frac{\mu_0 M}{R} \qquad M << H$$

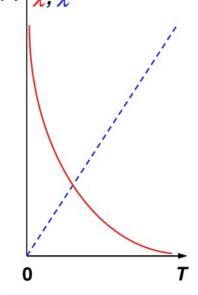
$$\vec{B} \approx \mu_0 \vec{H}$$

$$\chi \approx \frac{\mu_0 M}{R}$$

$$M \ll H$$

Isolierte magnetische Momente: Curie-Gesetz

$$M(B) = \frac{M_{S,0}}{V} \tanh(\frac{\mu_B B}{k_B T}) \quad \text{für s = +/-1/2}$$


$$\chi_{Curie}(T) = \frac{\mu_0 \mu_B^2}{k_B T} \frac{N}{V} = \frac{C}{T} \qquad (\mu_B B << k_B T)$$

Curie-Gesetz

Allgemeine isolierte magnetische Momente:

 $M(B) = gJ\mu_B B_I(x)N/V$ mit "Brioullin-Funktion" $B_I(x)$ und $x = gJ\mu_B B/k_B T$

$$\chi_{Curie}(T) = \frac{\mu_0 \mu_B^2 p^2}{3k_B T} \frac{N}{V} = \frac{C}{T} \qquad p = g \sqrt{J(J+1)} \qquad \vec{J} = \vec{L} + \vec{S}$$

J:Gesamtdrehimpulsquantenzahl g: Landé-Faktor p: effektive Magnetonenzahl

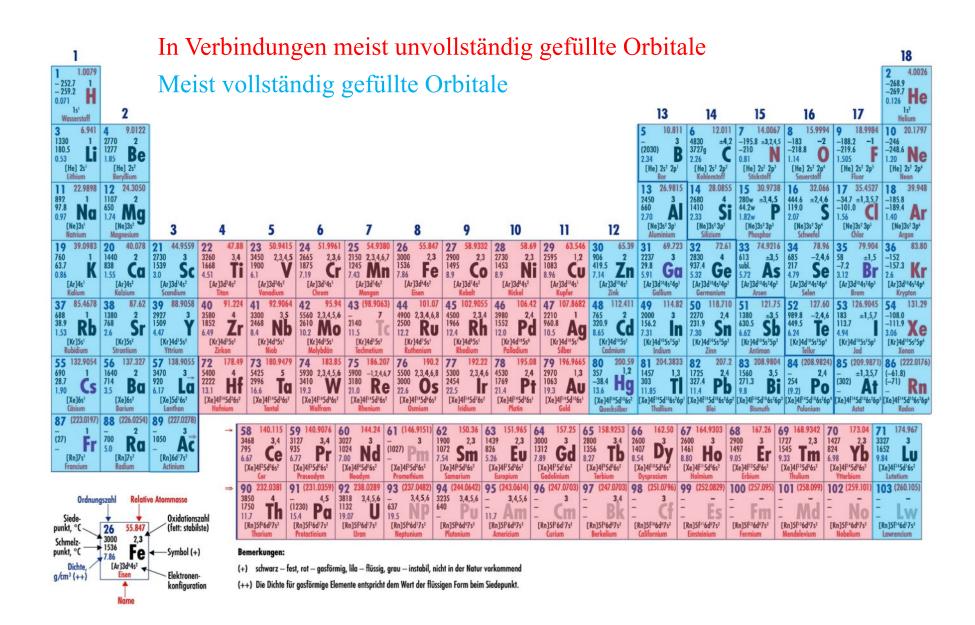
$$\vec{B} = \mu_0(\vec{M} + \vec{H}) \qquad \vec{B} \approx \mu_0 \vec{H}$$

$$\chi = \frac{M}{H} \qquad \chi \approx \frac{\mu_0 M}{R} \qquad M << H \qquad \begin{array}{c} Isolierte \ magnetische \ Momente: \\ Curie-Gesetz. \end{array}$$

lon	Konfiguration	Schema m _e = +2, +1, 0, -1, -2,	S	L	J	Term	$p = g_J [J(J+1)]^{1/2}$	$p = g_s[S(S+1)]^{1/2}$	p (Exp.)
Ti ³⁺ V ⁴⁺	[Ar]3d1	1	1/2	2	3/2	² D _{3/2}	1.55	1.73	1.8
V3+	[Ar]3d ²	1.1	1	3	2	3F ₂	1.63	2.83	2.8
Cr3+ V2+	[Ar]3d ³	1 1 1	3/2	3	3/2	4F _{3/2}	0.77	3.87	3.8
Mn³+ Cr²+	[Ar]3d4	1111	2	2	0	5D ₀	0	4.90	4.9
Fe ³⁺ Mn ²⁺	[Ar]3d ⁵	11111	5/2	0	5/2	⁶ S _{5/2}	5.92	5.92	5.9
Fe ²⁺	[Ar]3d ⁶	111 1 1 1	2	2	4	5D ₄	6.70	4.90	5.4
Co ²⁺	[Ar]3d ⁷	11111 1 1	3/2	3	9/2	4F _{9/2}	6.63	3.87	4.8
Ni ²⁺	[Ar]3d ⁸	1111111	1	3	4	3F ₄	5.59	2.83	3.2
Cu ²⁺	[Ar]3d ⁹	11111111	1/2	2	5/2	² D _{5/2}	3.55	1.73	1.9
Zn²+	[Ar]3d10	111111111	0	0	0	1S ₀	0	0	0

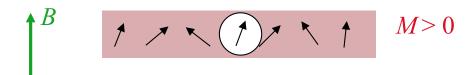
Grundzustandskonfiguration und effektive Magnetonenzahl p einiger Ionen der Übergangsmetalle.

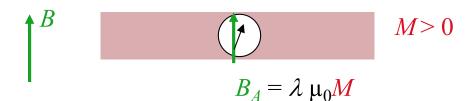
lon	Konfiguration	Schema m _e = +3, +2, +1, 0, -1, -2, -3	S	L	J	Term	p (berechnet)	p (Experiment)
La ³⁺	[Xe]4f ^o		0	0	0	1S ₀	0	0
Ce ³⁺	[Xe]4f1	1	1/2	3	5/2	2F _{5/2}	2.54	2.4
Pr³+	[Xe]4f ²	1.1	1	5	4	3H ₄	3.58	3.5
Nd3+	[Xe]4f ²	1 1 1	3/2	6	9/2	419/2	3.62	3.5
Pm³+	[Xe]4f ⁴	1 1 1 1	2	6	4	5 4	2.68	
Sm³+	[Xe]4f ⁵	11111	5/2	5	5/2	6H _{5/2}	0.84	1.5
Eu ³⁺	[Xe]4f ⁸	111111	3	3	0	⁷ F ₀	0	3.4
Gd ³⁺	[Xe]4f ⁷	111111	7/2	0	7/2	8S _{7/2}	7.94	8.0
Tb ³⁺	[Xe]4f8	111 1 1 1 1 1	3	3	6	⁷ F ₆	9.72	95
Dy ³⁺	[Xe]4f9	11111 1 1 1 1	5/2	5	15/2	6H _{15/2}	10.63	10.6
Ho ³⁺	[Xe]4f ¹⁰	1111111 1 1 1	2	6	8	5 8	10.60	10.4
Er3+	[Xe]4f11	11111111 1 1	3/2	6	15/2	41,15/2	9.59	9.5
Tm³+	[Xe]4f12	1111111111	1	5	6	3H ₆	7.57	7.3
Yb³+	[Xe]4f13	11111111111	1/2	3	7/2	2F _{7/2}	4.54	4.5
Lu ³⁺	[Xe]4f ¹⁴	11 11 11 11 11 11 11	0	0	0	1S ₀	0	0


Tabelle 12.1: Grundzustandskonfiguration und effektive Magnetonenzahl $\it p$ der dreiwertigen Ionen der Seltenen Erden.

Allgemeine isolierte magnetische Momente:

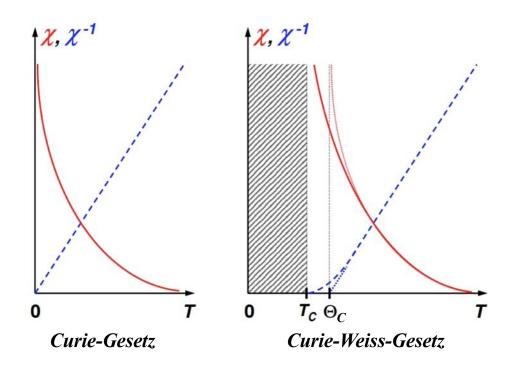
 $M(B) = gJ\mu_B B_J(x)N/V$ mit "Brioullin-Funktion" $B_J(x)$ und $x = gJ\mu_B B/k_B T$


$$\chi_{Curie}(T) = \frac{\mu_0 \mu_B^2 p^2}{3k_B T} \frac{N}{V} = \frac{C}{T}$$
 $p = g\sqrt{J(J+1)}$ $\vec{J} = \vec{L} + \vec{S}$


J:Gesamtdrehimpulsquantenzahl g: Landé-Faktor p: effektive Magnetonenzahl

Ferromagnetismus:

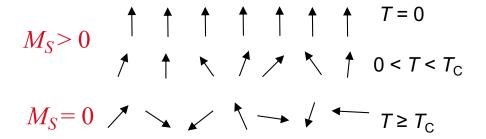
$$B=0 \qquad \nearrow \qquad \swarrow \qquad \longleftarrow \qquad M=0$$

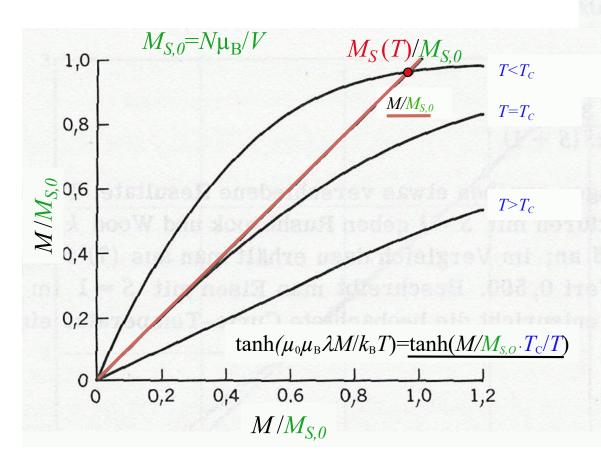


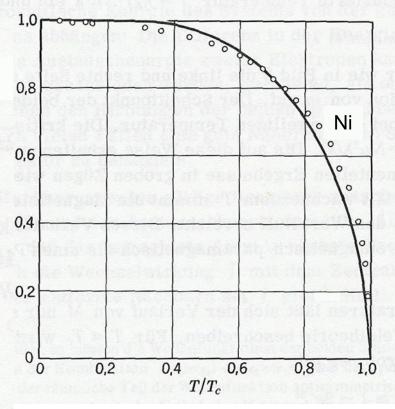
B_A: molekulares Austauschfeld ("Molekularfeld")

$$\mu_0 M = \chi_{Curie}(T) B_{total} = \chi_{Curie}(T) (B + \lambda \mu_0 M)$$

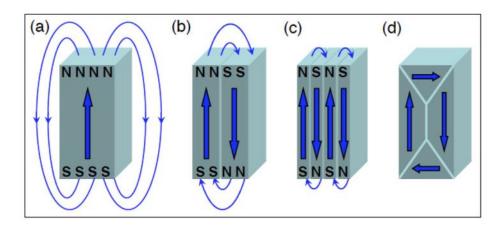
$$\chi(T) = \frac{C}{T - \lambda C} = \frac{C}{T - \Theta_C}$$
 Curie-Weiss-Gesetz

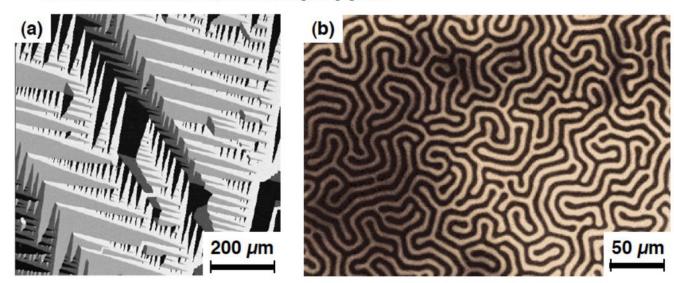

Material	$T_C(K)$	$\Theta_{C}(K)$	C (K)	$M_{s_0}(10^6 {\rm A/m})$	n_B
					$=M_{\rm s0}/\mu_{\rm B}$ pro Atom
Fe	1043	1100	2.22	1.746	2.22
Co	1395	1415	2.24	1.446	1.72
Ni	629	649	0.588	0.510	0.060
Gd	289	302	5.00	2.060	7.63
Dy	87	157	_	2.920	10.2
EuO	69.4	78	4.68	1.930	6.8
MnAs	630	318	_	870	3.4
Fe ₃ O ₄	858	-	_	510	4.1


 $\Theta_{\mathcal{C}} \approx \mathcal{T}_{\mathcal{C}}$: Curie-Temperatur ("Curie-Punkt")

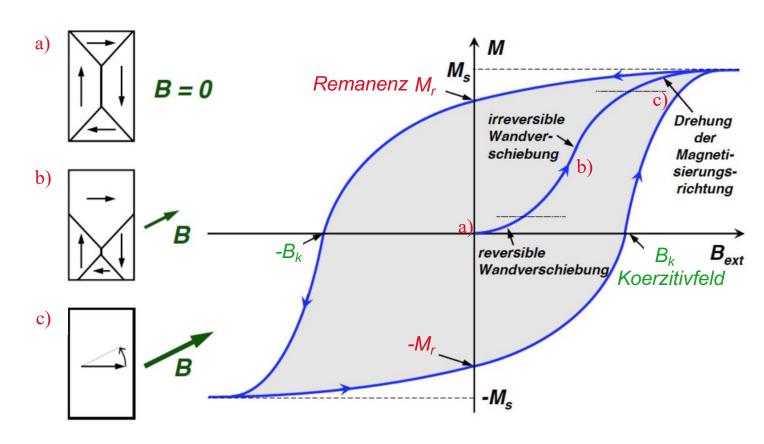

Ferromagnetismus:

Sättigungsmagnetisierung für B = 0:


$$M_S = M_{S,0} \tanh(\frac{\mu_0 \mu_B \lambda M_S}{k_B T})$$
 (für s = +/-1/2)



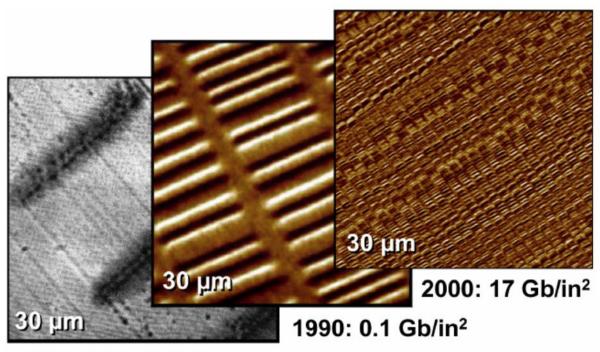
Ferromagnetismus: Domänenbildung für $T < T_C$



Zur Ursache der Domänenstruktur in Ferromagneten. Die magnetische Feldenergie nimmt von links nach rechts ab, die Wandenergie dagegen zu.

(a) Domänenstrukturen in einem Fe (100) Film aufgenommen mit einem spinpolariserten Rasterelektronenmikroskop. (b) Magnetooptische Abbildung der Domänenstruktur in einem amorphen Gd-Co-Film.

Ferromagnetismus: Domänenbildung für $T < T_C$ Ursache für Hysterese im magnetischen Verhalten

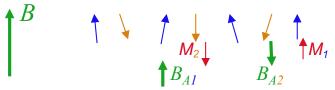


Ferromagnetismus: Domänenbildung für $T < T_c$

Ursache für Hysterese im magnetischen Verhalten

Technische Anwendung: magnetische Festplatten!

1 Bit = durch den magnetischen Schreibkopf erzeugte Domäne,
deren remanente Magnetisierung nach dem Schreibvorgang erhalten bleibt


1984: 0.04 Gb/in²

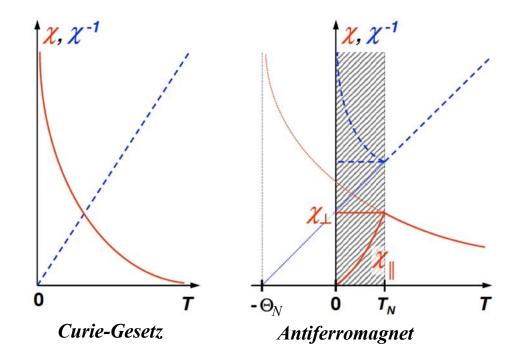
Verkleinerung des Bitmusters auf einer magnetischen Festplatte zwischen 1984 und 2000. Der Bildauschnitt beträgt jeweils $30x30 \,\mu\text{m}^2$ (Quelle: IBM Deutschland).

Antiferromagnetismus:

$$B_A = -\lambda \mu_0 M$$

molekulares Austauschfeld mit negativer Austauschkopplung

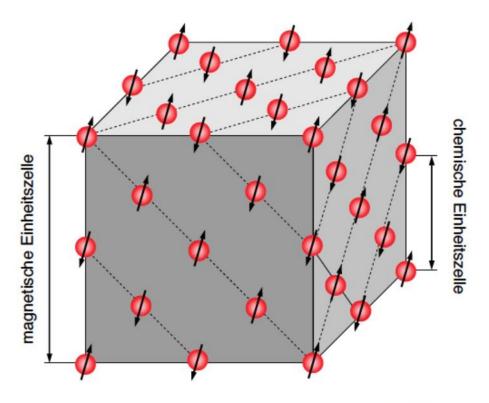
2 Untergitter mit Magnetisierungen M₁ und M₂

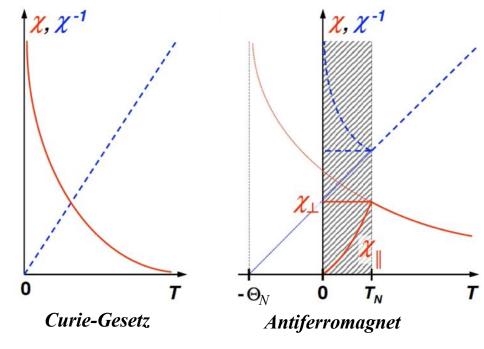

$$B_{AI} = -\lambda \mu_0 M_2 \qquad B_{A2} = -\lambda \mu_0 M_I$$

$$\mu_0 M_i = 1/2 \chi_{Curie}(T) (B - \lambda \mu_0 M_j)$$

$$\mu_0 M = \mu_0 (M_1 + M_2)$$

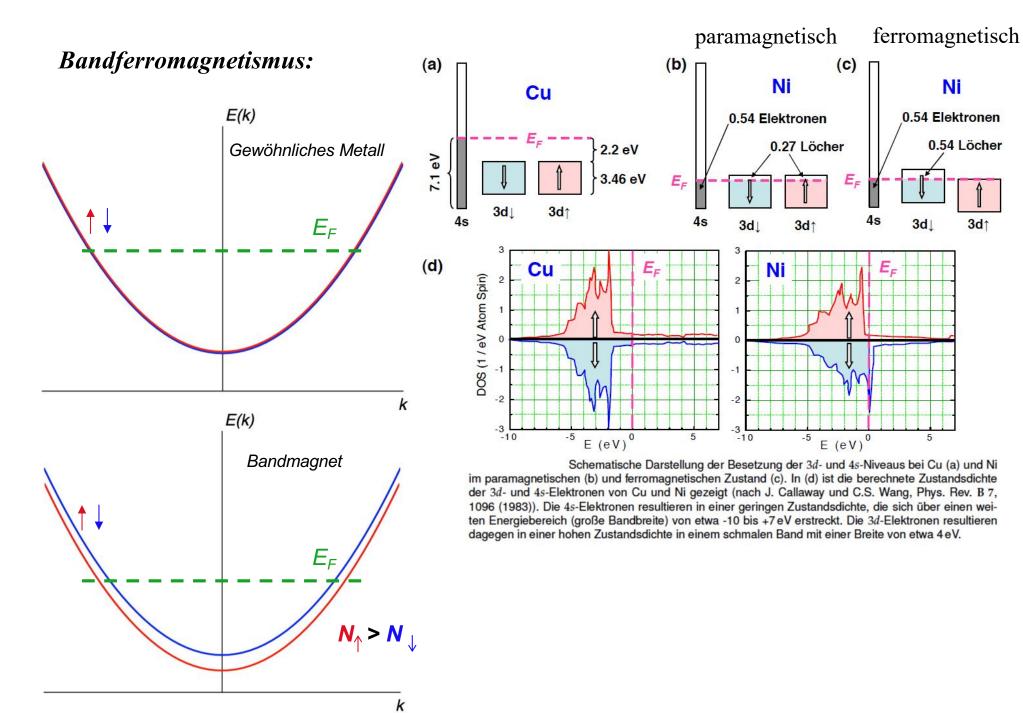
$$= \chi_{Curie}(T)B - 1/2\chi_{Curie}(T)\lambda\mu_0 M$$


$$\chi(T) = \frac{C}{T + \lambda C/2} = \frac{C}{T + \Theta_N}$$

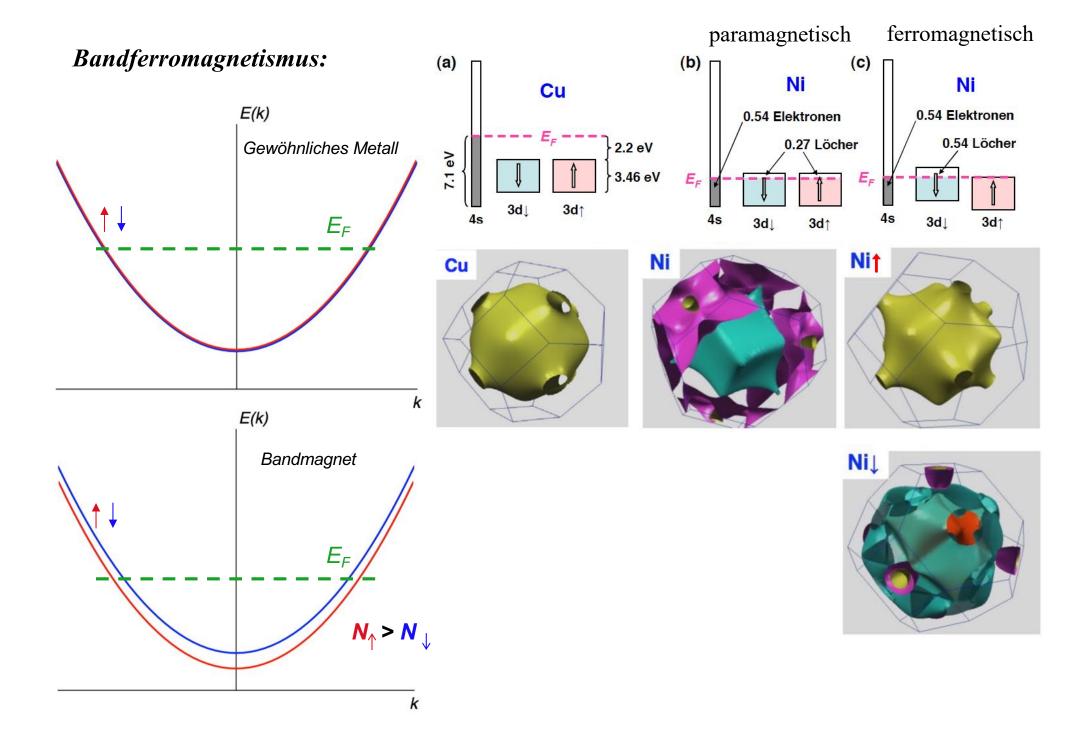

Substanz	T_N (K)	$\Theta_{\mathcal{N}}(K)$	Θ / T_N	
MnO	122	610	5.3	
MnF ₂	67	82	1.24	
FeO	195	570	2.9	
FeCl ₂	24	48	2	
CoO	291	330	1.14	
CoCl ₂	25	38.1	1.53	
NiO	525	~ 2000	~ 4	
NiCl ₂	50	68.2	1.37	

 $\Theta_N \approx T_N$: Néel-Temperatur

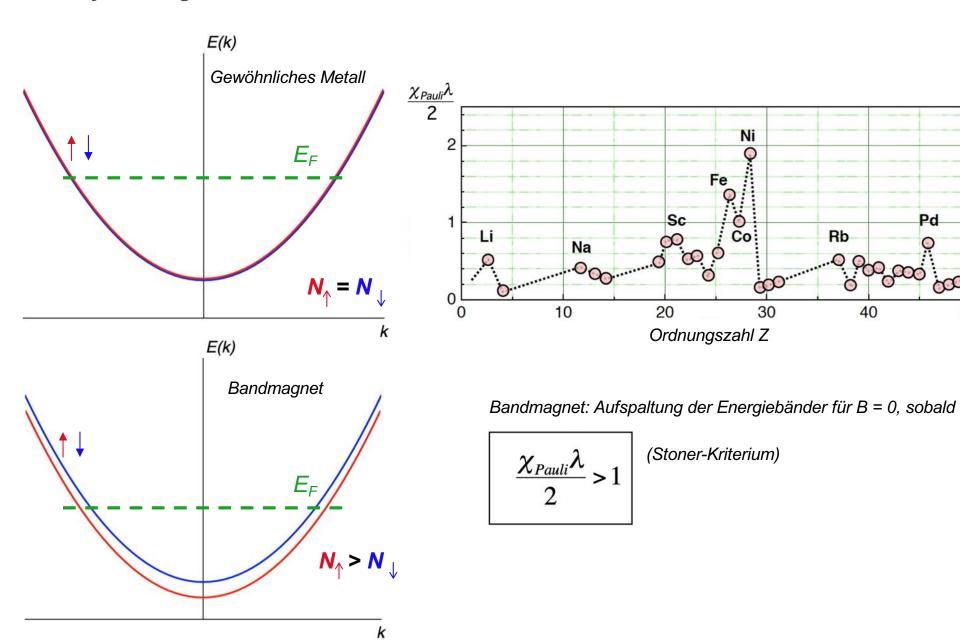
Antiferromagnetismus:



Anordnung der Spins der $\mathrm{Mn^{2+}}$ -Ionen in antiferromagnetischem MnO. Die zwischen den $\mathrm{Mn^{2+}}$ -Ionen liegenden $\mathrm{O^{2-}}$ -Ionen sind nicht gezeigt.


Substanz	$T_N(K)$	$\Theta_{\mathcal{N}}(K)$	Θ / T_N
MnO	122	610	5.3
MnF ₂	67	82	1.24
FeO	195	570	2.9
FeCl ₂	24	48	2
CoO	291	330	1.14
CoCl ₂	25	38.1	1.53
NiO	525	~ 2000	~ 4
NiCl ₂	50	68.2	1.37

 $\Theta_N \approx T_N$: Néel-Temperatur



Ni

3d↑

Bandferromagnetismus:

Pd

40

50